Breast cancer prevention is daunting, yet not an unsurmountable goal. Mammary stem and progenitors have been proposed as the cells‐of‐origin in breast cancer. Here, we present the concept of limiting these breast cancer precursors as a risk reduction approach in high‐risk women. A wealth of information now exists for phenotypic and functional characterization of mammary stem and progenitor cells in mouse and human. Recent work has also revealed the hormonal regulation of stem/progenitor dynamics as well as intrinsic lineage distinctions between mammary epithelial populations. Leveraging these insights, molecular marker‐guided chemoprevention is an achievable reality.
Cancer metabolism adapts the metabolic network of its tissue-of-origin. However, breast cancer is not a disease of a singular origin. Multiple epithelial populations serve as the culprit cell-of-origin for specific breast cancer subtypes, yet knowledge surrounding the metabolic network of normal mammary epithelial cells is limited. Here, we show that mammary populations have cell type-specific metabolic programs. Primary human breast cell proteomes of basal, luminal progenitor, and mature luminal populations revealed their unique enrichment of metabolic proteins. Luminal progenitors had higher abundance of electron transport chain subunits and capacity for oxidative phosphorylation, whereas basal cells were more glycolytic. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed distinct metabolic vulnerabilities of the mammary lineages.Computational analysis indicated that breast cancer subtypes retain metabolic features of their putative cell-of-origin. Lineage-restricted metabolic identities of normal mammary cells partly explain breast cancer metabolic heterogeneity and rationalize targeting subtype-specific metabolic vulnerabilities to advance breast cancer therapy..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.