Telomere maintenance is key during cancer development. Malignant cells can either use telomerase or an alternative lengthening of telomere (ALT) pathway to maintain their telomere length. In Hodgkin’s Lymphoma (HL), the presence of telomerase activation is established. The activation of ALT has been reported recently. Our data confirm this notion describing co-localization of the phosphorylated form of telomeric repeat-binding factor 1 (pT371-TRF1) with ALT-associated promyelocytic leukemia bodies. Surprisingly, to our knowledge, there are no published studies targeting both telomere maintenance pathways in HL. Consequently, we investigated, for the first time, the effects of both telomerase and ALT inhibition on HL cell viability: We inhibited telomerase and/or ALT, given either individually, simultaneously, or consecutively. We report that the inhibition of telomerase using BIBR1532 followed by ALT inhibition, using trabectedin, caused a decrease of greater than 90% in cell viability in three patient-derived HL cell lines. Our results suggest that HL cells are most vulnerable to the consecutive inhibition of telomerase followed by ALT inhibition.
Chromosomes are organized in distinct nuclear areas designated as chromosome territories (CT). The structural formation of CT is a consequence of chromatin packaging and organization that ultimately affects cell function. Chromosome positioning can identify structural signatures of genomic organization, especially for diseases where changes in gene expression contribute to a given phenotype. The study of CT in hematological diseases revealed chromosome position as an important factor for specific chromosome translocations. In this review, we highlight the history of CT theory, current knowledge on possible clinical applications of CT analysis, and the impact of CT in the development of hematological neoplasia such as multiple myeloma, leukemia, and lymphomas. Accumulating data on nuclear architecture in cancer allow one to propose the three-dimensional nuclear genomic landscape as a novel cancer biomarker for the future.
Breast cancer (BC) is the most common cancer in women, with metastatic BC being responsible for the highest number of deaths. A frequent site for BC metastasis is the brain. Brain metastasis derived from BC involves the cooperation of multiple genetic, epigenetic, angiogenic, and tumor–stroma interactions. Most of these interactions provide a unique opportunity for development of new therapeutic targets. Potentially targetable signaling pathways are Notch, Wnt, and the epidermal growth factor receptors signaling pathways, all of which are linked to driving BC brain metastasis (BCBM). However, a major challenge in treating brain metastasis remains the blood–brain barrier (BBB). This barrier restricts the access of unwanted molecules, cells, and targeted therapies to the brain parenchyma. Moreover, current therapies to treat brain metastases, such as stereotactic radiosurgery and whole-brain radiotherapy, have limited efficacy. Promising new drugs like phosphatase and kinase modulators, as well as BBB disruptors and immunotherapeutic strategies, have shown the potential to ease the disease in preclinical studies, but remain limited by multiple resistance mechanisms. This review summarizes some of the current understanding of the mechanisms involved in BC brain metastasis and highlights current challenges as well as opportunities in strategic designs of potentially successful future therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.