PurposePositron emission tomography (PET) imaging of brain amyloid load has been suggested as a core biomarker for Alzheimer’s disease (AD). The aim of this study was to test the feasibility of using PET imaging with 18F-AV-45 (florbetapir) in a routine clinical environment to differentiate between patients with mild to moderate AD and mild cognitive impairment (MCI) from normal healthy controls (HC).MethodsIn this study, 46 subjects (20 men and 26 women, mean age of 69.0 ± 7.6 years), including 13 with AD, 12 with MCI and 21 HC subjects, were enrolled from three academic memory clinics. PET images were acquired over a 10-min period 50 min after injection of florbetapir (mean ± SD of radioactivity injected, 259 ± 57 MBq). PET images were assessed visually by two individuals blinded to any clinical information and quantitatively via the standard uptake value ratio (SUVr) in the specific regions of interest, which were defined in relation to the cerebellum as the reference region.ResultsThe mean values of SUVr were higher in AD patients (median 1.20, Q1-Q3 1.16-1.30) than in HC subjects (median 1.05, Q1-Q3 1.04-1.08; p = 0.0001) in the overall cortex and all cortical regions (precuneus, anterior and posterior cingulate, and frontal median, temporal, parietal and occipital cortex). The MCI subjects also showed a higher uptake of florbetapir in the posterior cingulate cortex (median 1.06, Q1-Q3 0.97-1.28) compared with HC subjects (median 0.95, Q1-Q3 0.82-1.02; p = 0.03). Qualitative visual assessment of the PET scans showed a sensitivity of 84.6% (95% CI 0.55–0.98) and a specificity of 38.1% (95% CI 0.18–0.62) for discriminating AD patients from HC subjects; however, the quantitative assessment of the global cortex SUVr showed a sensitivity of 92.3% and specificity of 90.5% with a cut-off value of 1.122 (area under the curve 0.894).ConclusionThese preliminary results suggest that PET with florbetapir is a safe and suitable biomarker for AD that can be used routinely in a clinical environment. However, the low specificity of the visual PET scan assessment could be improved by the use of specific training and automatic or semiautomatic quantification tools.
Serum cystatin C (cysC) is a potential marker of the glomerular filtration rate (GFR) that has generated conflicting reports in children. A prospective study was conducted to assess the benefit of considering cysC together with serum creatinine (SCr) and demographic and morphologic characteristics to better estimate the 51Cr-ethylenediaminetetraacetate (EDTA) clearance (CL), i.e., the GFR. Plasma 51Cr-EDTA data from 100 children or young adults (range: 1.4-22.8 years old) were analyzed according to the population pharmacokinetic approach by using the nonlinear mixed effects model (NONMEM) program. The actual CL was compared to the CL predicted according to different covariate equations. The best covariate equation (+/-95% confidence interval) was: GFR (ml/min)=63.2(+/-3.4) . [(SCr (microM)/96)(-0.35 (+/-0.20))] . [(cysC (mg/l)/1.2)(-0.56 (+/-0.19))] . [(body weight (kg)/45)(0.30 (+/-0.17))] . [age (years)/14)(0.40 (+/-0.16))]. This equation was associated with a less biased and more precise estimation than the Schwartz equation. CysC improves the estimation of the GFR in children if considered with other covariates within the mathematical formula.
The aim of this study was to develop a method to predict the glomerular filtration rate (GFR) in children by using the population pharmacokinetic approach. This powerful approach is widely used for drug development in order to study relationships between patients' characteristics (demographic, morphological, biological covariates) and pharmacokinetic parameters. For the first time, (51)Cr-EDTA plasma concentrations from 64 children (development data set) were analyzed using the Non-linear Mixed Effects Model (NONMEM) program to determine the most appropriate equation to relate (51)Cr-EDTA clearance (as a measurement of GFR) and patient characteristics. The most predictive equation was based on body weight, square height, and plasma creatinine (PCr, determined by the Jaffé method). This equation was then validated using the data from a further 33 patients. This equation produced estimates of GFR that were less biased and more precise than those obtained using the widely used Schwartz formula. The coefficient of correlation between estimated and actual GFR was 0.83, and the 10th to 90th percentiles for percentage errors were -20% to +30%. Finally, analysis of the whole data set (97 patients) led to an equation (i.e., GFR (ml/min)=[56.7 x Body weight (kg)+0.142 x Length(2)(cm)]/PCr ( microM)) very similar to that obtained from the development data set. This equation would be useful for estimating GFR in children when isotopic determination of the (51)Cr-EDTA clearance cannot be performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.