The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
LPS stimulation of RAW264 macrophages triggered the activation of mitogen- and stress-activated protein kinases-1 and -2 (MSK1, MSK2) and their putative substrates, the transcription factors cyclic AMP response element-binding protein (CREB) and activating transcription factor-1 (ATF1). The activation of MSK1/MSK2 was prevented by preincubating the cells with a combination of two drugs that suppress activation of the classical mitogen-activated protein kinase cascade and stress-activated protein kinase/p38, respectively, but inhibition was only partial in the presence of either inhibitor. The LPS-stimulated activation of CREB and ATF1, the transcription of the cyclooxygenase-2 (COX-2) and IL-1β genes (the promoters of which contain a cyclic AMP response element), and the induction of the COX-2 protein were prevented by the same drug combination, as well as by Ro 318220 or H89, potent inhibitors of MSK1/MSK2. Two other transcription factors, C/EBPβ and NF-κB, have been implicated in the transcription of the COX-2 gene. However, PD 98059 and/or SB 203580 did not prevent the LPS-induced increase in the level of the transcription factor C/EBPβ, and none of the four inhibitors used in this study prevented the activation of NF-κB. Our results demonstrate that two different mitogen-activated protein kinase cascades are rate limiting for the LPS-induced activation of CREB/ATF1 and the transcription of the COX-2 and IL-1β genes. They also suggest that MSK1 and MSK2 may play a role in these processes and hence are potential targets for the development of novel antiinflammatory drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.