The present work suggests that both PLI and AEC depend on epoch length and that this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-level MST topology is less sensitive to differences in epoch length, therefore enabling the comparison of brain network topology between different studies.
EEG can be used to characterise functional networks using a variety of connectivity (FC) metrics. Unlike EEG source reconstruction, scalp analysis does not allow to make inferences about interacting regions, yet this latter approach has not been abandoned. Although the two approaches use different assumptions, conclusions drawn regarding the topology of the underlying networks should, ideally, not depend on the approach. The aim of the present work was to find an answer to the following questions: does scalp analysis provide a correct estimate of the network topology? how big are the distortions when using various pipelines in different experimental conditions? EEG recordings were analysed with amplitude- and phase-based metrics, founding a strong correlation for the global connectivity between scalp- and source-level. In contrast, network topology was only weakly correlated. The strongest correlations were obtained for MST leaf fraction, but only for FC metrics that limit the effects of volume conduction/signal leakage. These findings suggest that these effects alter the estimated EEG network organization, limiting the interpretation of results of scalp analysis. Finally, this study also suggests that the use of metrics that address the problem of zero lag correlations may give more reliable estimates of the underlying network topology.
During the last few years, there has been growing interest in the effects induced by individual variability on activation patterns and brain connectivity. The practical implications of individual variability is of basic relevance for both group level and subject level studies. The Electroencephalogram (EEG), still represents one of the most used recording techniques to investigate a wide range of brain related features. In this work, we aim to estimate the effect of individual variability on a set of very simple and easily interpretable features extracted from the EEG power spectra. In particular, in an identification scenario, we investigated how the aperiodic (1/f background) component of the EEG power spectra can accurately identify subjects from a large EEG dataset.The results of this study show that the aperiodic component of the EEG signal is characterized by strong subject-specific properties, that this feature is consistent across different experimental conditions (eyes-open and eyes-closed) and outperforms the canonically-defined frequency bands. These findings suggest that the simple features (slope and offset) extracted from the aperiodic component of the EEG signal are sensitive to individual traits and may help to characterize and make inferences at single subject level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.