We consider the motion by curvature of a network of smooth curves with multiple junctions in the plane, that is, the geometric gradient flow associated to the length functional. Such a flow represents the evolution of a two-dimensional multiphase system where the energy is simply the sum of the lengths of the interfaces, in particular it is a possible model for the growth of grain boundaries. Moreover, the motion of these networks of curves is the simplest example of curvature flow for sets which are "essentially" non regular. As a first step, in this paper we study in detail the case of three curves in the plane meeting at a single triple junction and with the other ends fixed. We show some results about the existence, uniqueness and, in particular, the global regularity of the flow, following the line of analysis carried on in the last years for the evolution by mean curvature of smooth curves and hypersurfaces.
The main purpose of this paper is to prove that the jump discontinuity set of the solution of the total variation based denoising problem is contained in the jump set of the datum to be denoised. We also prove some extensions of this result for the total variation minimization flow, for anisotropic norms, and for some more general convex functionals, which include the minimal surface equation case and its anisotropic extensions.
We prove a local existence and uniqueness result of crystalline mean curvature flow starting from a compact convex admissible set in R N . This theorem can handle the facet breaking/bending phenomena, and can be generalized to any anisotropic mean curvature flow. The method provides also a generalized geometric evolution starting from any compact convex set, existing up to the extinction time, satisfying a comparison principle, and defining a continuous semigroup in time. We prove that, when the initial set is convex, our evolution coincides with the flat φ-curvature flow in the sense of Almgren-Taylor-Wang. As a by-product, it turns out that the flat φ-curvature flow starting from a compact convex set is unique.
In their classical 1937 paper, Kolmogorov, Petrovsky and Piskunov proved that for a particular class of reaction-diffusion equations on the real line the solution of the initial value problem with the initial data in the form of a unit step propagates at long times with constant velocity equal to that of a certain special traveling wave solution. This type of a propagation result has since been established for a number of general classes of reaction-diffusion-advection problems in cylinders. Here we show that in problems without advection or in the presence of transverse advection by a potential flow these results do not rely on the specifics of the problem. Instead, they are a consequence of the fact that the equation considered is a gradient flow in an exponentially weighted L 2 -space generated by a certain functional, when the dynamics is considered in the reference frame moving with constant velocity along the cylinder axis. We show that independently of the details of the problem only three propagation scenarios are possible in the above context: no propagation, a "pulled" front, or a "pushed" front. The choice of the scenario is completely characterized via a minimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.