The structure of the electrical double layer has been debated for well over a century, since it mediates colloidal interactions, regulates surface structure, controls reactivity, sets capacitance, and represents the central element of electrochemical supercapacitors. The surface potential of such surfaces generally exceeds the electrokinetic potential, often substantially. Traditionally, a Stern layer of nonspecifically adsorbed ions has been invoked to rationalize the difference between these two potentials; however, the inability to directly measure the surface potential of dispersed systems has rendered quantitative measurements of the Stern layer potential, and other quantities associated with the outer Helmholtz plane, impossible. Here, we use x-ray photoelectron spectroscopy from a liquid microjet to measure the absolute surface potentials of silica nanoparticles dispersed in aqueous electrolytes. We quantitatively determine the impact of specific cations (Li þ , Na þ , K þ , and Cs þ ) in chloride electrolytes on the surface potential, the location of the shear plane, and the capacitance of the Stern layer. We find that the magnitude of the surface potential increases linearly with the hydrated-cation radius. Interpreting our data using the simplest assumptions and most straightforward understanding of Gouy-Chapman-Stern theory reveals a Stern layer whose thickness corresponds to a single layer of water molecules hydrating the silica surface, plus the radius of the hydrated cation. These results subject electrical double-layer theories to direct and falsifiable tests to reveal a physically intuitive and quantitatively verified picture of the Stern layer that is consistent across multiple electrolytes and solution conditions.
The chemistry and physics of charged interfaces is regulated by the structure of the electrical double layer (EDL). Herein we quantify the average thickness of the Stern layer at the silica (SiO2 ) nanoparticle/aqueous electrolyte interface as a function of NaCl concentration following direct measurement of the nanoparticles' surface potential by X-ray photoelectron spectroscopy (XPS). We find the Stern layer compresses (becomes thinner) as the electrolyte concentration is increased. This finding provides a simple and intuitive picture of the EDL that explains the concurrent increase in surface charge density, but decrease in surface and zeta potentials, as the electrolyte concentration is increased.
Insight into ion behavior at mixed organic/aqueous liquid surfaces is crucial for understanding the chemistry of atmospheric aerosols, which frequently contain mixtures of water, electrolytes, and organics. The addition of 1-butanol to an aqueous potassium iodide solution modifies the interfacial profile of ions at the liquid−vapor interface. Our experiments probe atomic composition at the liquid surface with ambient pressure X-ray photoelectron spectroscopy. Photoelectron kinetic energies are varied to produce a depth profile of the liquid−vapor interface. Molecular dynamics simulations of butanol in an aqueous electrolyte solution are used to develop a detailed understanding of the ion−solvent interactions in the interfacial region. Our previous work on pure aqueous salt solutions observed substantial ion concentrations at the liquid−vapor interface and an increased anion/cation ratio at the interface. A question has arisen as to whether covering the surface with an organic monolayer might change or suppress the interfacial ion concentrations. We observe that the direct interaction of both the cation and the anion with the butanol leads to changes in the ion concentrations in the region of the liquid interface. Substantial ion concentrations are still observed in the interfacial region in the presence of butanol. However, we do find that the presence of the butanol reduces the previously observed anion/cation separation in the interfacial region.
The CO binding behavior to gold particles supported on MgO thin films has been analyzed with scanning tunneling microscopy (STM) and infrared spectroscopy (IRAS). The ad-particles accommodate excess electrons that originate either from a charge transfer through the thin oxide film or from a local interaction with electron-rich oxide defects that act as Au nucleation centers. The enhanced electron density in the Au aggregates affects both the spatial distribution and the vibrational properties of adsorbed CO species. Whereas preferential CO attachment to the chemically unsaturated and electron-rich boundary sites of the Au islands is deduced from the STM data, a continuous downshift of the CO stretching frequency with decreasing particle size is observed in IRAS. Both results are interpreted in the light of CO adsorption to negatively charged metal aggregates and used to draw general conclusions on the interplay between charge and adsorption properties of confined metal systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.