There is clear evidence that the West Antarctic Ice Sheet is contributing to sea-level rise. In contrast, West Antarctic temperature changes in recent decades remain uncertain. West Antarctica has probably warmed since the 1950s, but there is disagreement regarding the magnitude, seasonality and spatial extent of this warming. This is primarily because long-term near-surface temperature observations are restricted to Byrd Station in central West Antarctica, a data set with substantial gaps. Here, we present a complete temperature record for Byrd Station, in which observations have been corrected, and gaps have been filled using global reanalysis data and spatial interpolation. The record reveals a linear increase in annual temperature between 1958 and 2010 by 2.4±1.2 • C, establishing central West Antarctica as one of the fastest-warming regions globally. We confirm previous reports of West Antarctic warming, in annual average and in austral spring and winter, but find substantially larger temperature increases. In contrast to previous studies, we report statistically significant warming during austral summer, particularly in December-January, the peak of the melting season. A continued rise in summer temperatures could lead to more frequent and extensive episodes of surface melting of the West Antarctic Ice Sheet. These results argue for a robust long-term meteorological observation network in the region.
[1] Compared to other regions, little is known about clouds in Antarctica. This arises in part from the challenging deployment of instrumentation in this remote and harsh environment and from the limitations of traditional satellite passive remote sensing over the polar regions. Yet clouds have a critical influence on the ice sheet's radiation budget and its surface mass balance. The extremely low temperatures, absolute humidity levels, and aerosol concentrations found in Antarctica create unique conditions for cloud formation that greatly differ from those encountered in other regions, including the Arctic. During the first decade of the 21st century, new results from field studies, the advent of cloud observations from spaceborne active sensors, and improvements in cloud parameterizations in numerical models have contributed to significant advances in our understanding of Antarctic clouds. This review covers four main topics: (1) observational methods and instruments, (2) the seasonal and interannual variability of cloud amounts, (3) the microphysical properties of clouds and aerosols, and (4) cloud representation in global and regional numerical models. Aside from a synthesis of the existing literature, novel insights are also presented. A new climatology of clouds over Antarctica and the Southern Ocean is derived from combined measurements of the CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellites. This climatology is used to assess the forecast cloud amounts in 20th century global climate model simulations. While cloud monitoring over Antarctica from space has proved essential to the recent advances, the review concludes by emphasizing the need for additional in situ measurements.
Antarctica boasts one of the world's harshest environments. Since the earliest expeditions, a major challenge has been to characterize the surface meteorology around the continent. In 1980, the University of Wisconsin—Madison (UW-Madison) took over the U.S. Antarctic Program (USAP) Automatic Weather Station (AWS) program. Since then, the UW-Madison AWS network has aided in the understanding of unique Antarctic weather and climate. This paper summarizes the development of the UW-Madison AWS network, issues related to instrumentation and data quality, and some of the ways these observations have and continue to benefit scientific investigations and operational meteorology.
Editor’s note: For easy download the posted pdf of the State of the Climate for 2019 is a low-resolution file. A high-resolution copy of the report is available by clicking here. Please be patient as it may take a few minutes for the high-resolution file to download.
The glaciers within the Amundsen Sea Embayment (ASE), West Antarctica, are amongst the most rapidly retreating in Antarctica. Meteorological reanalysis products are widely used to help understand and simulate the processes causing this retreat. Here we provide an evaluation against observations of four of the latest global reanalysis products within the ASE region-the European Centre for Medium-Range Weather Forecasts Interim Reanalysis (ERA-I), Japanese 55-year Reanalysis (JRA-55), Climate Forecast System Reanalysis (CFSR), and Modern Era Retrospective-Analysis for Research and Applications (MERRA). The observations comprise data from four automatic weather stations (AWSs), three research vessel cruises, and a new set of 38 radiosondes all within the period 2009-2014. All four reanalyses produce 2 m temperature fields that are colder than AWS observations, with the biases varying from approximately À1.8°C (ERA-I) to À6.8°C (MERRA). Over the Amundsen Sea, spatially averaged summertime biases are between À0.4°C (JRA-55) and À2.1°C (MERRA) with notably larger cold biases close to the continent (up to À6°C) in all reanalyses. All four reanalyses underestimate near-surface wind speed at high wind speeds (>15 m s À1 ) and exhibit dry biases and relatively large root-mean-square errors (RMSE) in specific humidity. A comparison to the radiosonde soundings shows that the cold, dry bias at the surface extends into the lower troposphere; here ERA-I and CFSR reanalyses provide the most accurate profiles. The reanalyses generally contain larger temperature and humidity biases, (and RMSE) when a temperature inversion is observed, and contain larger wind speed biases (~2 to 3 m s À1 ), when a low-level jet is observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.