We examined the effects of voluntary (16 weeks of wheel running) and forced (16 weeks of treadmill running) exercise on memory-related behavior, hippocampal volume, thioflavine-stained plaque number, and soluble Aβ levels in brain tissue in the Tg2576 mouse model of Alzheimer's disease (AD). Voluntary running animals spent more time investigating a novel object in a recognition memory paradigm than all other groups. Also, voluntary running animals showed fewer thioflavine S stained plaques than all other groups, whereas forced running animals showed an intermediate number of plaques between voluntary running and sedentary animals. Both voluntary and forced running animals had larger hippocampal volumes than sedentary animals. However, levels of soluble Aβ-40 or Aβ-42 did not significantly differ among groups. The results indicate that voluntary exercise may be superior to forced exercise for reducing certain aspects of AD-like deficits -i.e., plaque deposition and memory impairment, in a mouse model of AD.
The human apurinic/apyrimidinic endonuclease 1 (APE1) is a pleiotropic nuclear protein with roles in DNA base excision repair pathway as well as in regulation of transcription. Recently, the presence of extracellular plasma APE1 was reported in endotoxemic rats. However, the biological significance and the extracellular function of APE1 remain unclear. In this study, we found that monocytes secrete APE1 upon inflammatory challenges. Challenging the monocytic cells with extracellular APE1 resulted in the increased expression and secretion of the pro-inflammatory cytokine IL-6. Additionally, the extracellular APE1 treatment activated the transcription factor NF-κB, followed by its increased occupancy at the IL-6 promoter, resulting in the induction of IL-6 expression. APE1-induced IL-6 further served to elicit autocrine and paracrine cellular responses. Moreover, the extracellular IL-6 promoted the secretion of APE1, thus indicating a functional feedforward loop in this pathway. Furthermore, we show that APE1 is secreted through extracellular vesicles formation via endosomal sorting complex required for transport (ESCRT)-dependent pathway. Together, our study demonstrates a novel role of extracellular APE1 in IL-6-dependent cellular responses.
BackgroundMYC amplification or overexpression is common in Group 3 medulloblastoma and is associated with the worst prognosis. Recently, protein arginine methyl transferase (PRMT) 5 expression has been closely associated with aberrant MYC function in various cancers, including brain tumors such as glioblastoma. However, the role of PRMT5 and its association with MYC in medulloblastoma have not been explored. Here, we report the role of PRMT5 as a novel regulator of MYC and implicate PRMT5 as a potential therapeutic target in MYC-driven medulloblastoma.MethodsExpression and association between PRMT5 and MYC in primary medulloblastoma tumors were investigated using publicly available databases. Expression levels of PRMT5 protein were also examined using medulloblastoma cell lines and primary tumors by western blotting and immunohistochemistry, respectively. Using MYC-driven medulloblastoma cells, we examined the physical interaction between PRMT5 and MYC by co-immunoprecipitation and co-localization experiments. To determine the functional role of PRMT5 in MYC-driven medulloblastoma, PRMT5 was knocked-down in MYC-amplified cells using siRNA and the consequences of knockdown on cell growth and MYC expression/stability were investigated. In vitro therapeutic potential of PRMT5 in medulloblastoma was also evaluated using a small molecule inhibitor, EPZ015666.ResultsWe observed overexpression of PRMT5 in MYC-driven primary medulloblastoma tumors and cell lines compared to non-MYC medulloblastoma tumors and adjacent normal tissues. We also found that high expression of PRMT5 is inversely correlated with patient survival. Knockdown of PRMT5 using siRNA in MYC-driven medulloblastoma cells significantly decreased cell growth and MYC expression. Mechanistically, we found that PRMT5 physically associated with MYC by direct protein-protein interaction. In addition, a cycloheximide chase experiment showed that PRMT5 post-translationally regulated MYC stability. In the context of therapeutics, we observed dose-dependent efficacy of PRMT5 inhibitor EPZ015666 in suppressing cell growth and inducing apoptosis in MYC-driven medulloblastoma cells. Further, the expression levels of PRMT5 and MYC protein were downregulated upon EPZ015666 treatment. We also observed a superior efficacy of this inhibitor against MYC-amplified medulloblastoma cells compared to non-MYC-amplified medulloblastoma cells, indicating specificity.ConclusionOur results reveal the regulation of MYC oncoprotein by PRMT5 and suggest that targeting PRMT5 could be a potential therapeutic strategy for MYC-driven medulloblastoma.
Aberrant activation and interactions of hedgehog (HH) and PI3K/AKT/mTOR signaling pathways are frequently associated with high-risk medulloblastoma (MB). Thus, combined targeting of the HH and PI3K/AKT/mTOR pathways could be a viable therapeutic strategy to treat high-risk patients. Therefore, we investigated the anti-MB efficacies of combined HH inhibitor Vismodegib and PI3K-mTOR dual-inhibitor BEZ235 together or combined individually with cisplatin against high-risk MB. Using non-MYC- and MYC-amplified cell lines, and a xenograft mouse model, the in vitro and in vivo efficacies of these therapies on cell growth/survival and associated molecular mechanism(s) were investigated. Results showed that combined treatment of Vismodegib and BEZ235 together, or with cisplatin, significantly decreased MB cell growth/survival in a dose-dependent-fashion. Corresponding changes in the expression of targeted molecules following therapy were observed. Results demonstrated that inhibitors not only suppressed MB cell growth/survival when combined, but also significantly enhanced cisplatin-mediated cytotoxicity. Of these combinations, BEZ235 exhibited a significantly greater efficacy in enhancing cisplatin-mediated MB cytotoxicity. Results also demonstrated that the MYC-amplified MB lines showed a higher sensitivity to combined therapies compared to non-MYC-amplified cell lines. Therefore, we tested the efficacy of combined approaches against MYC-amplified MB growing in NSG mice. In vivo results showed that combination of Vismodegib and BEZ235 or their combination with cisplatin, significantly delayed MB tumor growth and increased survival of xenografted mice by targeting HH and mTOR pathways. Thus, our studies lay a foundation for translating these combined therapeutic strategies to the clinical setting to determine their efficacies in high-risk MB patients.
Intercellular communication between tumor cells within the hypoxic microenvironment promote aggressiveness and poor patient prognoses for reasons that remain unclear. Here we show that hypoxic Ewing's sarcoma (EWS) cells release exosomes that promote sphere formation, a stem-like phenotype, in EWS cells by enhancing survival. Analysis of the hypoxic exosomal miRNA cargo identified a HIF-1α regulated miRNA, miR-210, as a potential mediator of sphere formation in cells exposed to hypoxic exosomes. Knockdown of HIF-1α in hypoxic EWS cells led to decreased exosomal miR-210 levels and reduced the capacity of hypoxic exosomes to form spheres. Inhibition of miR-210 in hypoxic spheres attenuated sphere formation and overexpression of miR-210 in normoxic spheres significantly enhanced the number of EWS spheres. Our results indicate that hypoxic exosomal miR-210 targets the proapoptotic protein CASP8AP2 in recipient cells. Moreover, the suppression of CASP8AP2 led to a reduction in apoptotic cells and increased sphere formation. Together, the findings in this study suggest that hypoxic exosomes promote stemness in EWS cells by delivering enriched miR-210 that is capable of down-regulating apoptotic pathways, resulting in the survival of cells with increased sphere formation. Future studies will further investigate the effects of EWS derived exosomal miRNAs on target genes and the role these interactions play in driving aggressiveness in hypoxic EWS tumors. Core Cacility at UCLA, TACGenomics and the Flow Cytometry, Electron Microscopy and Nanomaterials Characterization Core Facilities at UNMC for their assistance with these studies. The authors thank the Child Health Research Institute and the Fred Pamela Buffet Cancer Center supported Core Facilities at UNMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.