Failures in complex systems controlled by human operators can be difficult to anticipate because of unexpected interactions between the elements that compose the system, including human-automation interaction (HAI). HAI analyses would benefit from techniques that support investigating the possible combinations of system conditions and HAIs that might result in failures. Formal verification is a powerful technique used to mathematically prove that an appropriately scaled model of a system does or does not exhibit desirable properties. This paper discusses how formal verification has been used to evaluate HAI. It has been used to evaluate human-automation interfaces for usability properties and to find potential mode confusion. It has also been used to evaluate system safety properties in light of formally modeled task analytic human behavior. While capable of providing insights into problems associated with HAI, formal verification does not scale as well as other techniques such as simulation. However, advances in formal verification continue to address this problem, and approaches that allow it to complement more traditional analysis methods can potentially avoid this limitation.
The failure of humans to respond to auditory medical alarms has resulted in numerous patient injuries and deaths and is thus a major safety concern. A relatively understudied source of response failures has to do with simultaneous masking, a condition where concurrent sounds interact in ways that make one or more of them imperceptible due to physical limitations of human perception. This paper presents a method, which builds on a previous implementation, that uses a novel combination of psychophysical modeling and formal verification with model checking to detect masking in a modeled configuration of medical alarms. Specifically, the new method discussed here improves the original method by adding the ability to detect additive masking while concurrently improving method usability and scalability. This paper describes how these additions to our method were realized. It then demonstrates the scalability and detection improvements via three different case studies. Results and future research are discussed.
Both the human factors engineering (HFE) and formal methods communities are concerned with improving the design of safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to perform formal verification of human–automation interaction with a programmable device. This effort utilizes a system architecture composed of independent models of the human mission, human task behavior, human-device interface, device automation, and operational environment. The goals of this architecture were to allow HFE practitioners to perform formal verifications of realistic systems that depend on human–automation interaction in a reasonable amount of time using representative models, intuitive modeling constructs, and decoupled models of system components that could be easily changed to support multiple analyses. This framework was instantiated using a patient controlled analgesia pump in a two phased process where models in each phase were verified using a common set of specifications. The first phase focused on the mission, human-device interface, and device automation; and included a simple, unconstrained human task behavior model. The second phase replaced the unconstrained task model with one representing normative pump programming behavior. Because models produced in the first phase were too large for the model checker to verify, a number of model revisions were undertaken that affected the goals of the effort. While the use of human task behavior models in the second phase helped mitigate model complexity, verification time increased. Additional modeling tools and technological developments are necessary for model checking to become a more usable technique for HFE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.