Surfactants such as sodium dodecylsulfate (SDS) can reduce the interfacial tension between bulk water and bulk n-hexadecane by 42 mN/m. Although reduction of interfacial tension should also take place on the interface of nanoscopic oil droplets in water, vibrational sum frequency scattering experiments indicate otherwise. In these measurements we have directly measured the adsorption of SDS onto hexadecane oil droplets with an average radius of 83 nm. We find that the interfacial density of adsorbed SDS is at least 1 order of magnitude lower than that at a corresponding planar interface. The derived maximum decrease in interfacial tension is only 5 mN/m.
We present sum frequency scattering spectra on kinetically stabilized emulsions consisting of nanoscopic oil droplets in water, stabilized with sodium dodecyl sulfate (SDS). We have measured the interfacial structure of the alkyl chains of the surfactant molecules, the alkyl chain of the oil molecules, the weakly dispersive D(2)O response, and the interference between SDS and the oil. We find a big difference in chain conformation: SDS has many chain defects, whereas the oil has very few. Our spectra are interpreted to originate from a surface structure with oil molecules predominantly oriented parallel with respect to the plane of the interface. The SDS headgroup is surrounded by water molecules. The SDS alkyl tail is in a disordered state and partially in contact with water. Such a conformation of surfactant occupies a surface area of several hundreds of squared angstroms.
This study uses transient X-ray absorption (XA) spectroscopy and time-dependent density functional theory (TD-DFT) to directly visualize the charge density around the metal atom and the surrounding ligands following an ultrafast metal-to-ligand charge-transfer (MLCT) process in the widely used Ru(II) solar cell dye, Ru(dcbpy)2(NCS)2 (termed N3). We measure the Ru L-edge XA spectra of the singlet ground ((1)A1) and the transient triplet ((3)MLCT) excited state of N3(4-) and perform TD-DFT calculations of 2p core-level excitations, which identify a unique spectral signature of the electron density on the NCS ligands. We find that the Ru 2p, Ru eg, and NCS π* orbitals are stabilized by 2.0, 1.0, and 0.6 eV, respectively, in the transient (3)MLCT state of the dye. These results highlight the role of the NCS ligands in governing the oxidation state of the Ru center.
An all-atom, flexible dimethyl sulfoxide model has been created for molecular dynamics simulations. The new model was tested against experiment for an array of thermodynamic, structural, and dynamic properties. Interactions with water were compared with previous simulations and experimental studies, and the unusual changes exhibited by dimethyl sulfoxide/water mixtures, such as the enhanced structure of the solution, were reproduced by the new model. Particular attention was given to the design of the electrostatic component of the force field and to providing compatibility with the CHARMM parameter sets for biomolecules.
Understanding interfacial charge-transfer
processes on the atomic
level is crucial to support the rational design of energy-challenge
relevant systems such as solar cells, batteries, and photocatalysts.
A femtosecond time-resolved core-level photoelectron spectroscopy
study is performed that probes
the electronic structure of the interface between ruthenium-based
N3 dye molecules and ZnO nanocrystals within the first picosecond
after photoexcitation and from the unique perspective of the Ru reporter
atom at the center of the dye. A transient chemical shift of the Ru
3d inner-shell photolines by (2.3 ± 0.2) eV to higher binding
energies is observed 500 fs after photoexcitation of the dye. The
experimental results are interpreted with the aid of ab initio calculations
using constrained density functional theory. Strong indications for
the formation of an interfacial charge-transfer state are presented,
providing direct insight into a transient electronic configuration
that may limit the efficiency of photoinduced free charge-carrier
generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.