The magnitude-8.8 Maule (Chile) earthquake of 27 February 2010 ruptured a segment of the Andean subduction zone megathrust that has been suspected to be of high seismic potential. It is the largest earthquake to rupture a mature seismic gap in a subduction zone that has been monitored with a dense space-geodetic network before the event. This provides an image of the pre-seismically locked state of the plate interface of unprecedentedly high resolution, allowing for an assessment of the spatial correlation of interseismic locking with coseismic slip. Pre-seismic locking might be used to anticipate future ruptures in many seismic gaps, given the fundamental assumption that locking and slip are similar. This hypothesis, however, could not be tested without the occurrence of the first gap-filling earthquake. Here we show evidence that the 2010 Maule earthquake slip distribution correlates closely with the patchwork of interseismic locking distribution as derived by inversion of global positioning system (GPS) observations during the previous decade. The earthquake nucleated in a region of high locking gradient and released most of the stresses accumulated in the area since the last major event in 1835. Two regions of high seismic slip (asperities) appeared to be nearly fully locked before the earthquake. Between these asperities, the rupture bridged a zone that was creeping interseismically with consistently low coseismic slip. The rupture stopped in areas that were highly locked before the earthquake but where pre-stress had been significantly reduced by overlapping twentieth-century earthquakes. Our work suggests that coseismic slip heterogeneity at the scale of single asperities should indicate the seismic potential of future great earthquakes, which thus might be anticipated by geodetic observations.
[1] On the basis of structural field work, fault kinematic analysis, and the analysis of digital imagery, we describe the northern part of the southern Andean intra-arc Liquiñe-Ofqui Fault Zone (LOFZ) as an SC-like fault zone system accommodating part of the Nazca-South American plate convergence obliquity. Kinematic modeling suggests that the LOFZ accommodated 124 (+24/À21) km of dextral displacement between 40°S and 42°S and 67 (+13/À11) km between 38°S and 40°S since the Pliocene. Associated vertical axis rotations are 31 ± 4°c lockwise and 9 ± 1°counterclockwise along synthetic and antithetic faults, respectively. Mean Pliocene to recent shear rates along the LOFZ decrease northward from 32 ± 6 mm/yr to 13 ± 3 mm/yr compatible with partitioning of half of the convergence obliquity into the intra-arc zone north of 40°S and complete partitioning to the south. The displacement gradient along the intra-arc zone results in margin-parallel shortening of the fore arc.
Viscoelastic effects potentially play an important role during all phases of the earthquake cycle in subduction zones. However, most current models neglect such effects in the interseismic deformation pattern. Here we use finite element method (FEM) models to investigate the control of viscoelasticity on interseismic deformation and to highlight the pitfalls of interpreting the data with purely elastic models for both the forward and inverse problems. Our results confirm that elastic models are prone to overestimating the interseismic locking depth, a crucial parameter for estimating the maximum possible earthquake magnitude. The application of the viscoelastic model improves the fit to the interseismic deformation, especially in the inland area. Additionally, we construct 3‐D FEM models constrained by geophysical and GPS data and apply our methodology to the Peru‐North Chile subduction zone. Our results indicate that viscoelastic effects contribute significantly to the observed GPS data. The signals interpreted as back‐arc shortening in the elastic model can be alternatively explained by viscoelastic deformation, which, in turn, dramatically refines the interseismic locking pattern in both dip and strike directions. Our viscoelastic locking map exhibits excellent correlation with the slip distributions of previous earthquakes, especially the recent 2014 Mw 8.1 Iquique earthquake. The incorrect elastic assumptions affect the analysis of interseismic deformation with respect to slip deficit calculations. Our results thus suggest that it is necessary to thoroughly reevaluate existing locking models that are based on purely elastic models, some of which attribute viscoelastic deformation to different sources such as microplate sliver motions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.