Summary A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic human N‐glycosylation (i.e. the presence of β1,2‐xylosylation and core α1,3‐fucosylation). In this study, RNA interference (RNAi) technology was used to obtain a targeted down‐regulation of the endogenous β1,2‐xylosyltransferase (XylT) and α1,3‐fucosyltransferase (FucT) genes in Nicotiana benthamiana, a tobacco‐related plant species widely used for recombinant protein expression. Three glyco‐engineered lines with significantly reduced xylosylated and/or core α1,3‐fucosylated glycan structures were generated. The human anti HIV monoclonal antibody 2G12 was transiently expressed in these glycosylation mutants as well as in wild‐type plants. Four glycoforms of 2G12 differing in the presence/absence of xylose and core α1,3‐fucose residues in their N‐glycans were produced. Notably, 2G12 produced in XylT/FucT‐RNAi plants was found to contain an almost homogeneous N‐glycan species without detectable xylose and α1,3‐fucose residues. Plant‐derived glycoforms were indistinguishable from Chinese hamster ovary (CHO)‐derived 2G12 with respect to electrophoretic properties, and exhibited functional properties (i.e. antigen binding and HIV neutralization activity) at least equivalent to those of the CHO counterpart. The generated RNAi lines were stable, viable and did not show any obvious phenotype, thus providing a robust tool for the production of therapeutically relevant glycoproteins in plants with a humanized N‐glycan structure.
SummaryIn recent years, plants have become an attractive alternative for the production of recombinant proteins. However, their inability to perform authentic mammalian N -glycosylation may cause limitations for the production of therapeutics. A major concern is the presence of β 1,2-xylose and core α 1,3-fucose residues on complex N -linked glycans, as these N -glycan epitopes are immunogenic in mammals. In our attempts towards the humanization of plant N -glycans, we have generated an Arabidopsis thaliana knockout line that synthesizes complex N -glycans lacking immunogenic xylose and fucose epitopes. Here, we report the expression of a monoclonal antibody in these glycan-engineered plants that carry a homogeneous mammalian-like complex N -glycan pattern without β 1,2-xylose and core α 1,3-fucose. Plant and Chinese hamster ovary (CHO)-derived immunoglobulins (IgGs) exhibited no differences in electrophoretic mobility and enzyme-linked immunosorbent specificity assays. Our results demonstrate the feasibility of a knockout strategy for N -glycan engineering of plants towards mammalian-like structures, thus providing a significant improvement in the use of plants as an expression platform.
A common argument against using plants as a production system for therapeutic proteins is their inability to perform authentic N-glycosylation. A major concern is the presence of beta 1,2-xylose and core alpha 1,3-fucose residues on complex N-glycans as these nonmammalian N-glycan residues may provoke unwanted side effects in humans. In this study we have investigated the potential antigenicity of plant-type N-glycans attached to a human monoclonal antibody (2G12). Using glyco-engineered plant lines as expression hosts, four 2G12 glycoforms differing in the presence/absence of beta 1,2-xylose and core alpha 1,3-fucose were generated. Systemic immunization of rabbits with a xylose and fucose carrying 2G12 glycoform resulted in a humoral immune response to both N-glycan epitopes. Furthermore, IgE immunoblotting with sera derived from allergic patients revealed binding to plant-produced 2G12 carrying core alpha 1,3 fucosylated N-glycan structures. Our results provide evidence for the adverse potential of nonmammalian N-glycan modifications present on monoclonal antibodies produced in plants. This emphasizes the need for the use of glyco-engineered plants lacking any potentially antigenic N-glycan structures for the production of plant-derived recombinant proteins intended for parenteral human application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.