In the context of controlling the current outbreak of Ebola virus disease (EVD), the World Health Organization claimed that 'critical determinant of epidemic size appears to be the speed of implementation of rigorous control measures', i.e. immediate followup of contact persons during 21 days after exposure, isolation and treatment of cases, decontamination, and safe burials. We developed the Surveillance and Outbreak Response Management System (SORMAS) to improve efficiency and timeliness of these measures. We used the Design Thinking methodology to systematically analyse experiences from field workers and the Ebola Emergency Operations Centre (EOC) after successful control of the EVD outbreak in Nigeria. We developed a process model with seven personas representing the procedures of EVD outbreak control. The SORMAS system architecture combines latest In-Memory Database (IMDB) technology via SAP HANA (in-memory, relational database management system), enabling interactive data analyses, and established SAP cloud tools, such as SAP Afaria (a mobile device management software). The user interface consists of specific front-ends for smartphones and tablet devices, which are independent from physical configurations. SORMAS allows real-time, bidirectional information exchange between field workers and the EOC, ensures supervision of contact follow-up, automated status reports, and GPS tracking. SORMAS may become a platform for outbreak management and improved routine surveillance of any infectious disease. Furthermore, the SORMAS process model may serve as framework for EVD outbreak modelling.
The advance of high-throughput RNA-Sequencing techniques enables researchers to analyze the complete gene activity in particular cells. From the insights of such analyses, researchers can identify disease-specific expression profiles, thus understand complex diseases like cancer, and eventually develop effective measures for diagnosis and treatment. The high dimensionality of gene expression data poses challenges to its computational analysis, which is addressed with measures of gene selection. Traditional gene selection approaches base their findings on statistical analyses of the actual expression levels, which implies several drawbacks when it comes to accurately identifying the underlying biological processes. In turn, integrative approaches include curated information on biological processes from external knowledge bases during gene selection, which promises to lead to better interpretability and improved predictive performance. Our work compares the performance of traditional and integrative gene selection approaches. Moreover, we propose a straightforward approach to integrate external knowledge with traditional gene selection approaches. We introduce a framework enabling the automatic external knowledge integration, gene selection, and evaluation. Evaluation results prove our framework to be a useful tool for evaluation and show that integration of external knowledge improves overall analysis results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.