Steroid receptor drugs have been available for more than half a century, but details of the ligand binding mechanism have remained elusive. We solved X-ray structures of the glucocorticoid and mineralocorticoid receptors to identify a conserved plasticity at the helix 6-7 region that extends the ligand binding pocket toward the receptor surface. Since none of the endogenous ligands exploit this region, we hypothesized that it constitutes an integral part of the binding event. Extensive all-atom unbiased ligand exit and entrance simulations corroborate a ligand binding pathway that gives the observed structural plasticity a key functional role. Kinetic measurements reveal that the receptor residence time correlates with structural rearrangements observed in both structures and simulations. Ultimately, our findings reveal why nature has conserved the capacity to open up this region, and highlight how differences in the details of the ligand entry process result in differential evolutionary constraints across the steroid receptors.
Allosteric communication within proteins is a hallmark of biochemical signaling, but the dynamic transmission pathways remain poorly characterized. We combined NMR spectroscopy and surface plasmon resonance to reveal these pathways and quantify their energetics in the glucocorticoid receptor, a transcriptional regulator controlling development, metabolism, and immune response. Our results delineate a dynamic communication network of residues linking the ligand-binding pocket to the activation function-2 interface, where helix 12, a switch for transcriptional activation, exhibits ligand- and coregulator-dependent dynamics coupled to graded activation. The allosteric free energy responds to variations in ligand structure: subtle changes gradually tune allostery while preserving the transmission pathway, whereas substitution of the entire pharmacophore leads to divergent allosteric control by apparently rewiring the communication network. Our results provide key insights that should aid in the design of mechanistically differentiated ligands.
Synthetic glucocorticoids (GC) are essential for the treatment of a broad range of inflammatory diseases. However, their use is limited by target related adverse effects on, e.g., glucose homeostasis and bone metabolism. Starting from a nonsteroidal GR ligand (4) that is a full agonist in reporter gene assays, we exploited key functional triggers within the receptor, generating a range of structurally diverse partial agonists. Of these, only a narrow subset exhibited full anti-inflammatory efficacy and a significantly reduced impact on adverse effect markers in human cell assays compared to prednisolone. This led to the discovery of AZD9567 (15) with excellent in vivo efficacy when dosed orally in a rat model of joint inflammation. Compound 15 is currently being evaluated in clinical trials comparing the efficacy and side effect markers with those of prednisolone.
Advanced protein structure prediction methods combined with structure modeling show that the mammalian proteins, described until now as calcium-activated chloride channels (CLCAs), appear in fact to be membrane anchored metal-dependent hydrolases, possibly proteases. A metallohydrolase structural domain was predicted, unexpectedly, in the CLCA sequences. The well-conserved active site in the modeled structure of this hydrolase domain allows the prediction of catalytic action similar to that of metalloproteases. A number of protein structure prediction methods suggest the overall fold of the N-terminal hydrolase domain to be most similar to that of zinc metalloproteases (zincins), notably matrixins. This is confirmed by analysis of the three-dimensional structure model of the predicted CLCA1 hydrolase domain built using the known structure of the MMP-11 catalytic domain. Fragments of CLCA1 corresponding to the modeled hydrolase domain were expressed in Escherichia coli, and the resulting proteins were readily refolded into monomeric soluble protein, indicating formation of stable independent domains. The homology model was used to predict putative substrate sequences. Homologs of mammalian CLCA genes were detected in the genomes of a vast array of multicellular animals: lower vertebrates, tunicates, insects, crustaceans, echinoderms, and flatworms. The hydrolase prediction is discussed in the context of published experimentally determined effects of CLCA proteins on chloride conductance. Altered proteolytic processing of full-length CLCA1 containing a mutation abolishing the predicted hydrolase activity is shown as initial experimental evidence for a role of the hydrolase domain in processing of mature full-length CLCA1. The hydrolase prediction together with the presented experimental data add to doubts about the function of CLCAs as chloride channels and strengthen the hypothesis of channel-activating and/or channel-accessory roles.
A class of potent, nonsteroidal, selective indazole ether-based glucocorticoid receptor modulators (SGRMs) was developed for the inhaled treatment of respiratory diseases. Starting from an orally available compound with demonstrated anti-inflammatory activity in rat, a soft-drug strategy was implemented to ensure rapid elimination of drug candidates to minimize systemic GR activation. The first clinical candidate 1b (AZD5423) displayed a potent inhibition of lung edema in a rat model of allergic airway inflammation following dry powder inhalation combined with a moderate systemic GR-effect, assessed as thymic involution. Further optimization of inhaled drug properties provided a second, equally potent, candidate, 15m (AZD7594), that demonstrated an improved therapeutic ratio over the benchmark inhaled corticosteroid 3 (fluticasone propionate) and prolonged the inhibition of lung edema, indicating potential for once-daily treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.