Nowadays, a challenging scenario involving additive manufacturing (AM), or 3D printing, relates to concerns on the manufacturing of electronic devices. In particular, the possibility of using fused filament fabrication (FFF) technology, which is well known for being very widespread and inexpensive, to fabricate structures with embedded sensing elements, is really appealing. Several researchers in this field have highlighted the high electrical resistance values and variability in 3D-printed strain sensors made via FFF. It is important to find a way to minimize the electrical resistance and variability among strain sensors printed under the same conditions for several reasons, such as reducing the measurement noise and better balancing four 3D-printed strain gauges connected to form a Wheatstone bridge to obtain better measurements. In this study, a design of experiment (DoE) on 3D-printed strain gauges, studying the relevance of printing and design parameters, was performed. Three different commercial conductive materials were analyzed, including a total of 105 printed samples. The output of this study is a combination of parameters which allow both the electrical resistance and variability to be minimized; in particular, it was discovered that the “welding effect” due to the layer height and printing orientation is responsible for high values of resistance and variability. After the optimization of printing and design parameters, further experiments were performed to characterize the sensitivity of each specimen to mechanical and thermal stresses, highlighting an interesting aspect. A sensible variation of the electrical resistance at room temperature was observed, even if no stress was applied to the specimen, suggesting the potential of exploiting these materials for the 3D printing of highly sensitive temperature sensors.
In this paper we present a study of the repeatability of an innovative electromagnetic tracking system (EMTS) for surgical navigation, developed to overcome the state of the art of current commercial systems, allowing for the placement of the magnetic field generator far from the operating table. Previous studies led to the development of a preliminary EMTS prototype. Several hardware improvements are described, which result in noise reduction in both signal generation and the measurement process, as shown by experimental tests. The analysis of experimental results has highlighted the presence of drift in voltage components, whose effect has been quantified and related to the variation of the sensor position. Repeatability in the sensor position measurement is evaluated by means of the propagation of the voltage repeatability error, and the results are compared with the performance of the Aurora system (which represents the state of the art for EMTS for surgical navigation), showing a repeatability error about ten times lower. Finally, the proposed improvements aim to overcome the limited operating distance between the field generator and electromagnetic (EM) sensors provided by commercial EM tracking systems for surgical applications and seem to provide a not negligible technological advantage.
Additive manufacturing technologies allow the fabrication of smart objects, which are made up of a dielectric part and an embedded sensor able to give real-time feedback to the final user. This research presents the characterization of a low-cost 3D-printed strain sensor, fabricated using material extrusion (MeX) technology by using a conductive material composed of a polylactic acid (PLA)-based matrix doped with carbon black and carbon nanotubes (CNT), thus making the plastic conductive. A suitable measurement set-up was developed to perform automatic characterization tests using a high repeatability industrial robot to define either displacement or force profiles. The correlation between the applied stimulus and the variation of the electrical resistance of the 3D-printed sensor was evaluated, and an approach was developed to compensate for the effect of temperature. Results show that temperature and hysteresis affect repeatability; nevertheless, the sensor accurately detects impulse forces ranging from 10 g to 50 g. The sensor showed high linearity and exhibited a sensitivity of 0.077 Ω g−1 and 12.54 Ω mm−1 in the force and displacement range of 114 g and 0.7 mm, respectively, making them promising due to their low cost, ease of fabrication, and possible integration into more complex devices in a single-step fabrication cycle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.