Background: Childhood maltreatment is a potent predictor of poor mental health across the life span. We argue that there is a need to improve the understanding of the mechanisms that confer psychiatric vulnerability following maltreatment, if we are to progress from simply treating those with a manifest disorder, to developing effective preventative approaches that can help offset the likelihood that such disorders will emerge in the first place. Methods: We review extant functional neuroimaging studies of children and adolescents exposed to early neglect and/or maltreatment, including physical, sexual and emotional abuse across four neurocognitive domains: threat processing, reward processing, emotion regulation and executive control. Findings are discussed in the context of 'latent vulnerability', where alterations in neurocognitive function are considered to carry adaptive value in early adverse caregiving environments but confer long-term risk. Results: Studies on threat processing indicate heightened as well as depressed neural responsiveness in maltreated samples, particularly in the amygdala, thought to reflect threat hypervigilance and avoidance respectively. Studies on reward processing generally report blunted neural response to anticipation and receipt of rewards, particularly in the striatum, patterns associated with depressive symptomatology. Studies on emotion regulation report increased activation of the anterior cingulate cortex (ACC) during active emotion regulation, possibly reflecting greater effortful processing. Finally, studies of executive control report increased dorsal ACC activity during error monitoring and inhibition. Conclusions: An emerging body of work indicates that altered neurocognitive functioning following maltreatment: (a) is evident even in the absence of overt psychopathology; (b) is consistent with perturbations seen in individuals presenting with psychiatric disorder; (c) can predict future psychiatric symptomatology. These findings suggest that maltreatment leads to neurocognitive alterations that embed latent vulnerability to psychiatric disorder, establishing a compelling case for identifying those children at most risk and developing mechanistically informed models of preventative intervention. Such interventions should aim to offset the likelihood of any future psychiatric disorder.
Many patients with post-traumatic stress disorder (PTSD), especially war veterans, do not respond to available treatments. Here, we describe a novel neurofeedback (NF) intervention using real-time functional magnetic resonance imaging for treating and studying PTSD. The intervention involves training participants to control amygdala activity after exposure to personalized trauma scripts. Three combat veterans with chronic PTSD participated in this feasibility study. All three participants tolerated well the NF training. Moreover, two participants, despite the chronicity of their symptoms, showed clinically meaningful improvements, while one participant showed a smaller symptom reduction. Examination of changes in resting-state functional connectivity patterns revealed a normalization of brain connectivity consistent with clinical improvement. These preliminary results support feasibility of this novel intervention for PTSD and indicate that larger, well-controlled studies of efficacy are warranted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.