CP2K is an open source electronic structure and molecular dynamics software package to perform atomistic simulations of solid-state, liquid, molecular, and biological systems. It is especially aimed at massively parallel and linear-scaling electronic structure methods and state-of-the-art ab initio molecular dynamics simulations. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern high-performance computing systems. This review revisits the main capabilities of CP2K to perform efficient and accurate electronic structure simulations. The emphasis is put on density functional theory and multiple post–Hartree–Fock methods using the Gaussian and plane wave approach and its augmented all-electron extension.
We present an implementation of G0W0 and eigenvalue-self-consistent GW (evGW) in the Gaussian and plane waves scheme for molecules. We calculate the correlation self-energy for imaginary frequencies employing the resolution of the identity. The correlation self-energy for real frequencies is then evaluated by analytic continuation. This technique allows an efficient parallel implementation and application to systems with several hundreds of atoms. Various benchmark calculations are presented. In particular, the convergence with respect to the most important numerical parameters is assessed for the benzene molecule. Comparisons with respect to other G0W0 implementations are reported for a set of molecules, while the performance of the method has been measured for water clusters containing up to 480 atoms in a cc-TZVP basis. Additionally, G0W0 has been applied for studying the influence of the ligands on the gap of small CdSe nanoparticles. evGW has been employed to calculate the HOMO-LUMO gaps of linear acenes, linear chains formed of connected benzene rings. Distinct differences between the closed and the open-shell (broken-symmetry) evGW HOMO-LUMO gaps for long acenes are found. In future experiments, a comparison of measured HOMO-LUMO gaps and our calculated evGW values may be helpful to determine the electronic ground state of long acenes.
MP2 provides a good description of hydrogen bonding in water clusters and includes longrange dispersion interactions without the need to introduce empirical elements in the description of the interatomic potential. To assess its performance for bulk liquid water under ambient conditions, an isobaric-isothermal (NpT) Monte Carlo simulation at the second-order Moller-Plesset perturbation theory level (MP2) has been performed. The obtained value of the water density is excellent (1.02 g/mL), and the calculated radial distribution functions are in fair agreement with experimental data. The MP2 results are compared to a few density functional approximations, including semilocal functionals, hybrid functionals, and functionals including empirical dispersion corrections. These results demonstrate the feasibility of directly sampling the potential energy surface of condensed-phase systems using correlated wave function theory, and their quality paves the way for further applications. Understanding the structural and electronic properties of liquid water at ambient conditions is a major challenge in condensed matter simulations. Water is a crucial ingredient for a large variety of systems of prime importance in basic chemistry, biology, and physics, as well as in the applied fields of catalysis and energy production. The water molecule has a large dipole moment and polarizability, is a multiple hydrogen donor and acceptor and can easily build network structures.The total cohesive energy in the condensed phase is, as a consequence of these properties, a sum of many weak interactions. Theoretical models face therefore the challenge to describe many different effects and their subtle interplay at a high precision. The development of sophisticated empirical potentials for water 1-10 , allowed to gain insights into water's behavior and its thermodynamic properties [11][12][13] , such as, density maxima, heat capacity and effects of supercooling. However, empirical models lack transferability and might fail if used under conditions away from their fitting range. Most importantly, as soon as water takes an active role in a chemical process, either as a strongly interacting solvent, or for example as a source of protons, the electronic properties of the water molecule need to be taken into account. In this respect, first-principles methods offer the possibility to describe all the underlying physics on the same footing, simplifying the treatment of intra-and inter-molecular interactions. The capability to reproduce properties of complex systems such as liquid water can therefore be used to judge the sophistication and predictive power of a given quantum mechanical model. Density functional theory (DFT) is the most used quantum mechanical method employed for studying physical and chemical properties of condensed phase systems. Many DFT based simulation of bulk water have been reported in the literature, and in this context three main methods of sampling the phase space can be recognized 14 : the Car-Parrinello molecula...
A novel algorithm, based on a hybrid Gaussian and plane waves (GPW) approach, is developed for the canonical second order Moller-Plesset perturbation energy (MP2) of finite and extended systems. The key aspect of the method is that the electron repulsion integrals (ia vertical bar lambda sigma) are computed by direct integration between the products of Gaussian basis functions lambda sigma and the electrostatic potential arising from a given occupied virtual pair density ia. The electrostatic potential is obtained in a plane waves basis set after solving the Poisson equation in Fourier space. In particular, for condensed phase systems, this scheme is highly efficient. Furthermore, our implementation has low memory requirements and displays excellent parallel scalability up to 100 000 processes. In this way, canonical MP2 calculations for condensed phase systems containing hundreds of atoms or more than 5000 basis functions can be performed within minutes, while systems up to 1000 atoms and 10 000 basis functions remain feasible. Solid LiH has been employed as a benchmark to study basis set and system size convergence. Lattice constants and cohesive energies of various molecular crystals have been studied with MP2 and double-hybrid functionals. Furthermore, our implementation has low memory requirements and displays excellent parallel scalability up to 100 000 processes. In this way, canonical MP2 calculations for condensed phase systems containing hundreds of atoms or more than 5000 basis functions can be performed * To whom correspondence should be addressed † Institute of Physical Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland ‡ Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich, Switzerland 1 within minutes. Lattice constants and cohesive energies of various molecular crystals have been studied with MP2 and double hybrid functionals.
Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaric-isothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hydrogen bonding interactions. For several properties, obtaining quantitative agreement with experiment requires correction for nuclear quantum effects (NQEs), highlighting their importance, for structure, dynamics, and electronic properties. A computed NQE shift of 0.6 eV for the band gap and absorption spectrum illustrates the latter. Giving access to both structure and dynamics of condensed phase systems, non-local electron correlation will increasingly be used to study systems where weak interactions are of paramount importance. Water is a ubiquitous liquid that displays a wide range of anomalous properties and has a delicate structure that challenges experiment and simulation alike. The various intermolecular interactions that play an important role, such as repulsion, polarization, hydrogen bonding, and van der Waals interactions, are often difficult to reproduce faithfully in atomistic models. Here, electronic structure theories including all these interactions at equal footing, which requires the inclusion of non-local electron correlation, are used to describe structure and dynamics of bulk liquid water. Isobaricisothermal (NpT) ensemble simulations based on the Random Phase Approximation (RPA) yield excellent density (0.994 g/ml) and fair radial distribution functions, while various other density functional approximations produce scattered results (0.8-1.2 g/ml). Molecular dynamics simulation in the microcanonical (NVE) ensemble based on Møller-Plesset perturbation theory (MP2) yields dynamical properties in the condensed phase, namely, the infrared spectrum and diffusion constant. At the MP2 and RPA levels of theory, ice is correctly predicted to float on water, resolving one of the anomalies as resulting from a delicate balance between van der Waals and hyd...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.