Among solution-processed nanocrystals containing environmentally benign elements, bismuth sulfi de (Bi 2 S 3 ) is a very promising n-type semiconductor for solar energy conversion. Despite the prompt success in the fabrication of optoelectronic devices deploying Bi 2 S 3 nanocrystals, the limited understanding of electronic properties represents a hurdle for further materials developments. Here, two key materials science issues for light-energy conversion are addressed: bandgap tunability via the quantum size effect, and photocarrier trapping. Nanocrystals are synthesized with controlled sizes varying from 3 to 30 nm. In this size range, bandgap tunability is found to be very small, a few tens of meV. First principles calculations show that a useful blueshift, in the range of hundreds of meV, is achieved in ultra-small nanocrystals, below 1.5 nm in size. Similar conclusions are envisaged for the class of pnictide chalcogenides with a ribbon-like structure [Pn 4 Ch 6 ] n (Pn = Bi, Sb; Ch = S, Se). Time-resolved differential transmission spectroscopy demonstrates that only photoexcited holes are quickly captured by intragap states. Photoexcitation dynamics are consistent with the scenario emerging in other metal-chalcogenide nanocrystals: traps are created in metal-rich nanocrystal surfaces by incomplete passivation by long fatty acid ligands. In large nanocrystals, a lower bound to surface trap density of one trap every sixteen Bi 2 S 3 units is found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.