SLURP-1 is a secreted toxin-like Ly-6/uPAR protein found in epithelium, sensory neurons and immune cells. Point mutations in the slurp-1 gene cause the autosomal inflammation skin disease Mal de Meleda. SLURP-1 is considered an autocrine/paracrine hormone that regulates growth and differentiation of keratinocytes and controls inflammation and malignant cell transformation. The majority of previous studies of SLURP-1 have been made using fusion constructs containing, in addition to the native protein, extra polypeptide sequences. Here we describe the activity and pharmacological profile of a recombinant analogue of human SLURP-1 (rSLURP-1) differing from the native protein only by one additional N-terminal Met residue. rSLURP-1 significantly inhibited proliferation (up to ~ 40%, EC50 ~ 4 nM) of human oral keratinocytes (Het-1A cells). Application of mecamylamine and atropine,—non-selective inhibitors of nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors, respectively, and anti-α7-nAChRs antibodies revealed α7 type nAChRs as an rSLURP-1 target in keratinocytes. Using affinity purification from human cortical extracts, we confirmed that rSLURP-1 binds selectively to the α7-nAChRs. Exposure of Xenopus oocytes expressing α7-nAChRs to rSLURP-1 caused a significant non-competitive inhibition of the response to acetylcholine (up to ~ 70%, IC50 ~ 1 μM). It was shown that rSLURP-1 binds to α7-nAChRs overexpressed in GH4Cl cells, but does not compete with 125I-α-bungarotoxin for binding to the receptor. These findings imply an allosteric antagonist-like mode of SLURP-1 interaction with α7-nAChRs outside the classical ligand-binding site. Contrary to rSLURP-1, other inhibitors of α7-nAChRs (mecamylamine, α-bungarotoxin and Lynx1) did not suppress the proliferation of keratinocytes. Moreover, the co-application of α-bungarotoxin with rSLURP-1 did not influence antiproliferative activity of the latter. This supports the hypothesis that the antiproliferative activity of SLURP-1 is related to ‘metabotropic’ signaling pathway through α7-nAChR, that activates intracellular signaling cascades without opening the receptor channel.
Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a ‘three-finger’ fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC50 ~0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the ‘classical’ orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.
Lynx1 is a GPI-tethered protein colocalized with nicotinic acetylcholine receptors (nAChRs) in the brain areas important for learning and memory. Previously, we demonstrated that at low micromolar concentrations the water-soluble Lynx1 variant lacking GPI-anchor (ws-Lynx1) acts on α7-nAChRs as a positive allosteric modulator. We hypothesized that ws-Lynx1 could be used for improvement of cognitive processes dependent on nAChRs. Here we showed that 2 µM ws-Lynx1 increased the acetylcholine-evoked current at α7-nAChRs in the rat primary visual cortex L1 interneurons. At higher concentrations ws-Lynx1 inhibits α7-nAChRs expressed in Xenopus laevis oocytes with IC 50 ~ 50 µM. In mice, ws-Lynx1 penetrated the bloodbrain barrier upon intranasal administration and accumulated in the cortex, hippocampus, and cerebellum. Chronic ws-Lynx1 treatment prevented the olfactory memory and motor learning impairment induced by the α7-nAChRs inhibitor methyllycaconitine (MLA). Enhanced long-term potentiation and increased paired-pulse facilitation ratio were observed in the hippocampal slices incubated with ws-Lynx1 and in the slices from ws-Lynx1-treated mice. Long-term potentiation blockade observed in MLA-treated mice was abolished by ws-Lynx1 co-administration. To understand the mechanism of ws-Lynx1 action, we studied the interaction of ws-Lynx1 and MLA at α7-nAChRs, measured the basal concentrations of endogenous Lynx1 and the α7 nAChR subunit and their association in the mouse brain. Our findings suggest that endogenous Lynx1 limits α7-nAChRs activation in the adult brain. Ws-Lynx1 partially displaces Lynx1 causing positive modulation of α7-nAChRs and enhancement 42) for the binding to the nAChR subunits, abolishes the Aβ 1-42 cytotoxic effect in the cultured cortical neurons (Thomsen et al., 2016), and prevents the long-term potentiation (LTP) blockade caused by Aβ 1-42 (Bychkov et al., 2018). Here, we investigated the ws-Lynx1 influence on cognitive processes in vivo and on the synaptic plasticity processes ex vivo. To model cognitive impairment associated with the loss of nAChR function, C57BL/6 mice were chronically treated with of synaptic plasticity. Ws-Lynx1 and similar compounds may constitute useful hits for treatment of cognitive deficits associated with the cholinergic system dysfunction.
This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.