Genes have a major role in the control of high-density lipoprotein (HDL) cholesterol (HDL-C) levels. Here we have identified two Tangier disease (TD) families, confirmed 9q31 linkage and refined the disease locus to a limited genomic region containing the gene encoding the ATP-binding cassette transporter (ABC1). Familial HDL deficiency (FHA) is a more frequent cause of low HDL levels. On the basis of independent linkage and meiotic recombinants, we localized the FHA locus to the same genomic region as the TD locus. Mutations in ABC1 were detected in both TD and FHA, indicating that TD and FHA are allelic. This indicates that the protein encoded by ABC1 is a key gatekeeper influencing intracellular cholesterol transport, hence we have named it cholesterol efflux regulatory protein (CERP).
ATP-binding cassette transporter A1 (ABCA1) is known to mediate cholesterol efflux to lipid-poor apolipoprotein A-I. In addition, ABCA1 has been shown to influence functions of the plasma membrane, such as endocytosis and phagocytosis. Here, we report that ABCA1 expression results in a significant redistribution of cholesterol and sphingomyelin from rafts to non-rafts. Caveolin, a raft/caveolae marker also redistributes from punctate caveolae-like structures to the general area of the plasma membrane upon ABCA1 expression. Furthermore, we observed significant reduction of Akt activation in ABCA1-expressing cells, consistent with raft disruption. Cholesterol content in the plasma membrane is, however, not altered. Moreover, we provide evidence that a non-functional ABCA1 with mutation in an ATP-binding domain, A937V, fails to redistribute cholesterol, sphingomyelin, or caveolin. A937V also fails to influence Akt activation. Finally, we show that apolipoprotein A-I preferentially associates with nonraft membranes in ABCA1-expressing cells. Our results thus demonstrate that ABCA1 causes a change in overall lipid packing of the plasma membrane, likely through its ATPase-related functions. Such reorganization by ABCA1 effectively expands the non-raft membrane fractions and, consequentially, pre-conditions cells for cholesterol efflux.
Background-The proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes independently of its enzymatic activity the degradation of the low-density lipoprotein (LDL) receptor. PCSK9 gain of function in humans leads to autosomal dominant hypercholesterolemia, whereas the absence of functional PCSK9 results in Ϸ7-fold lower levels of LDL cholesterol. This suggests that lowering PCSK9 may protect against atherosclerosis. Methods and Results-We investigated the role of PCSK9 in atherosclerosis in C57BL/6 wild-type (WT), apolipoprotein E-deficient, and LDL receptor-deficient mouse models. Circulating cholesterol levels, fast protein liquid chromatography profiles, aortic cholesteryl esters (CE), and plaque sizes were determined. Intima-media thicknesses were measured by ultrasound biomicroscopy. First, mice expressing null (knockout [KO]), normal (WT), or high (transgenic [Tg]) levels of PCSK9 were fed a 12-month Western diet. KO mice accumulated 4-fold less aortic CE than WT mice, whereas Tg mice exhibited high CE and severe aortic lesions. Next we generated apolipoprotein E-deficient mice, known to spontaneously develop lesions, that expressed null (KO/e), normal (WT/e), or high (Tg/e) levels of PCSK9. After a 6-month regular diet, KO/e mice showed a 39% reduction compared with WT/e mice in aortic CE accumulation, whereas Tg/e mice showed a 137% increase. Finally, LDL receptor-deficient mice expressing no (KO/L), normal (WT/L), or high (Tg/L) levels of PCSK9 were fed a Western diet for 3 months. KO/L and Tg/L mice exhibited levels of plasma cholesterol and CE accumulation similar to those of WT/L mice, suggesting that PCSK9 modulates atherosclerosis mainly via the LDL receptor. Conclusions-Altogether, our results show a direct relationship between PCSK9 and atherosclerosis. PCSK9 overexpression is proatherogenic, whereas its absence is protective. (Circulation. 2012;125:894-901.)Key Words: atherosclerosis Ⅲ cardiovascular diseases Ⅲ cholesterol Ⅲ lipoproteins Ⅲ proprotein convertases A therosclerosis is a progressive degenerative pathology of large arteries that leads to ischemic heart diseases, which are expected to remain one of the leading causes of mortality until at least 2030. 1 The different stages of atherosclerotic plaque development have been reviewed extensively. [2][3][4][5] In brief, high levels of circulating atherogenic lipoproteins favor the accumulation of oxidized low-density lipoproteins (LDLs) in the subendothelial space. The latter are taken up by invading macrophages that, if they cannot efflux excess cholesterol to high-density lipoprotein, become foam cells. Foamy cells then release cytokines that recruit more macrophages into the building plaque. After formation of a necrotic core, plaques may ultimately become unstable; their fibrous cap can rupture and cause the formation of thrombus that can lead to death. Although inflammation is an important contributor to atherosclerosis, accumulation of oxidized LDLs in the subendothelial compartment is a key triggering event in atherosclerosis...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.