IMPORTANCE Symptom-based methods of concussion diagnosis in contact sports result in underdiagnosis and repeated head injury exposure, increasing the risk of long-term disability. Measures of neuro-ophthalmologic (NO) function have the potential to serve as objective aids, but their diagnostic utility is unknown. OBJECTIVE To identify NO measures that accurately differentiate athletes with and without concussion. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted among athletes with and without concussion who were aged 17 to 22 years between 2016 and 2017. Eye movements and cognitive function were measured a median of 19 days after injury among patients who had an injury meeting the study definition of concussion while playing a sport (retrospectively selected from a concussion clinic), then compared with a control group of participants without concussion (enrolled from 104 noncontact collegiate athlete volunteers without prior head injury). Data analysis was conducted from November 2019 through May 2020. EXPOSURE Concussion. MAIN OUTCOMES AND MEASURES Classification accuracy of clinically important discriminator eye-tracking (ET) metrics. Participants' eye movements were evaluated with a 12-minute ET procedure, yielding 42 metrics related to smooth pursuit eye movement (SPEM), saccades, dynamic visual acuity, and reaction time. Clinically important discriminator metrics were defined as those with significantly different group differences and area under the receiver operator characteristic curves (AUROCs) of at least 0.70. RESULTS A total of 34 participants with concussions (mean [SD] age, 19.7 [2.4] years; 20 [63%] men) and 54 participants without concussions (mean [SD] age, 20.8 [2.2] years; 31 [57%] men) completed the study. Six ET metrics (ie, simple reaction time, discriminate reaction time, discriminate visual reaction speed, choice visual reaction speed, and reaction time on 2 measures of dynamic visual acuity 2) were found to be clinically important; all were measures of reaction time, and none were related to SPEM. Combined, these 6 metrics had an AUROC of 0.90 (95% CI, 0.80-0.99), a sensitivity of 77.8%, and a specificity of 92.6%. The 6 metrics remained significant on sensitivity testing. CONCLUSIONS AND RELEVANCE In this study, ET measures of slowed visual reaction time had high classification accuracy for concussion. Accurate, objective measures of NO function have the potential to improve concussion recognition and reduce the disability associated with underdiagnosis.
Objective: To summarize the evidence linking contact sports-related repetitive head impacts (RHIs) and short-term declines in neurologic function. Methods: A scoping review following the guidelines in the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) and searching 3 databases (PubMed, EMBASE, and Web of Science) was performed. Peer-reviewed research articles were eligible for inclusion if they were full-length English language articles published between 1999 and 2019 examining athletes between the ages of 14 and 40 years exposed to RHIs, and reporting cognitive, vestibular, and/or oculomotor outcomes within 4 weeks of last head hit exposure. Results: Fifty-two articles met criteria for review: 14 reported oculomotor outcomes, 23 reported vestibular outcomes, and 36 reported cognitive function. Short-term RHI-related declines in neurologic function were reported in 42.9% of oculomotor studies, in 20.8% of vestibular studies, and in 33.3% of cognitive studies. Most of the 52 studies involved American football, soccer, or ice hockey athletes at the collegiate (n = 23) or high school (n = 14) level. Twenty-four (46%) studies involved only male athletes. Wearable sensors were used to measure RHIs in 24 studies (46%), while RHIs were not measured in 26 studies (50%). In addition, many studies failed to control for attention-deficit/hyperactivity disorder/learning disability and/or concussion history. Conclusion:The results of this scoping review suggest that the evidence linking RHIs to short-term declines in neurologic function is relatively sparse and lacking in methodological rigor. Although most studies failed to find a link, those that did were more likely to use objective measures of RHIs and to control for confounders. More careful trial design may be needed to definitively establish a causal link between RHIs and short-term neurologic dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.