Advanced systems that require shared control are becoming increasingly pervasive. One advantage of a shared control approach is that the human and machine work together to accomplish safe operations. However, data about the human is needed to implement successful strategies. The goal of this study was to quantify naturalistic driving by collecting performance and physiological data during manual, open-loop driving. Sixteen participants performed a single drive that included four sudden obstacles of increasing difficulty (road debris, construction, inclement weather, and an animal). Participants were asked to traverse each obstacle using self-employed judgement and strategies. Action selection, lane deviation, speed, and heart rate data were recorded. Results showed two distinct driving strategies for avoiding the moving obstacle/animal (left vs. right lane navigation). Also, maximum speed was affected by obstacle type, but heart rate variability was not. Results can be used to inform shared control algorithms designed to combat poor driving performance.
The field of Cyber-Physical Systems (CPS) is increasingly recognizing the importance of integrating Human Factors for Human-in-the-loop CPS (HiLCPS) developments. This is because psychological, physiological, and behavioral characteristics of humans can be used to predict human-machine interactions. The goal of this pilot study is to collect initial data to determine whether driving and eye tracking metrics can provide evidence of learning for a CPS project. Six participants performed a series of 12 repeated obstacle avoidance tasks in manual driving. Lane deviations and fixation-related eye data were recorded for each trial. Overall, participants displayed either conservation/safe or aggressive/risky in their lateral position with respect to the obstacle during successive trials. Also, eye tracking metrics were not significantly affected by trial number, but observational trends suggest their potential for aiding in understanding adjustments humans make in learning. Results can inform predictive modeling algorithms that can anticipate and mitigate potential problems in real-time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.