Carbon nanotubes (CNTs) possess outstanding properties that could be useful in several technological, drug delivery, and diagnostic applications. However, their unique physical and chemical properties are hindered due to their poor solubility. This article review's the different ways and means of solubility enhancement of single-wall carbon nanotubes (SWNTs). The advantages of SWNTs over the multi-walled carbon nanotubes (MWNTs) and the method of non-covalent modification for solubility enhancement has been the key interest in this review. The review also highlights a few examples of dispersant design. The review includes some interesting utility of SWNTs being wrapped with polymer especially in biological media that could mediate proper drug delivery to target cells. Further, the use of wrapped SWNTs with phospholipids, nucleic acid, and amphiphillic polymers as biosensors is of research interest. The review aims at summarizing the developments relating to wrapped SWNTs to generate further research prospects in healthcare.
Context:
Astaxanthin (Ast), a compound used widely as a dietary supplement, has high antioxidant properties but poor oral bioavailability. To benefit from its nutritional values in cognitive function, Ast was formulated into a nanoemulsion which may improve its penetration through the blood–brain barrier (BBB).
Aim:
The present study aims to quantitate the Ast nanoemulsion in different regions of the brain tissue using the high-performance liquid chromatography method.
Materials and Methods:
Sprague–Dawley rats were fed with Ast nanoemulsion formulation daily (40, 80, and 160 mg/kg body weight, bw) for 28 days before brain tissues were harvested, extracted, and quantified. A simple, sensitive, and reliable method using high-performance liquid chromatography with an ultraviolent detector was developed and validated to quantify Ast in the brain.
Statistical Analysis:
Data were analyzed using the ToolPak Data Analysis in Excel for
t
-test and analysis of variance single factor with Tukey
post hoc
analysis.
Results:
The calibration curve demonstrated a linear regression with an
r
2
of 0.9998 and absolute recovery ranging from 97.8% to 109.6%. The hippocampus of the 160 mg/kg bw treatment group showed a significantly higher concentration of Ast (77.9 ± 17.3 μg/g) compared to the cortex (22.3 ± 4.2 μg/g) and cerebellum (33.1 ± 5.4 μg/g). Ast was detected in the cerebellum of the 80 mg/kg bw (29.4 ± 7.8 μg/g) treatment group with the amount not being significantly different to the 160 mg/kg bw (33.1 ± 5.4 μg/g) treatment group.
Conclusions:
It was evident that the Ast nanoemulsion formulated was able to cross the BBB and may provide protective benefits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.