Within the plasma membrane environment, glycoconjugate-receptor interactions play an important role in the regulation of cell-cell interactions. We have investigated the mechanism and activity of the human neuraminidase (NEU) isoenzyme, NEU3, on T cell adhesion receptors. The enzyme is known to prefer glycolipid substrates, and we confirmed that exogenous enzyme altered the glycolipid composition of cells. NEU3 was able to modify the sialic acid content of purified LFA-1 in vitro. Enzymatic activity of NEU3 resulted in re-organization of LFA-1 into large clusters on the membrane. This change was facilitated by an increase in the lateral mobility of LFA-1 upon NEU3 treatment. Changes to the lateral mobility of LFA-1 were specific for NEU3 activity, and we observed no significant change in diffusion when cells were treated with a bacterial NEU (NanI). Furthermore, we found that NEU3 treatment of cells increased surface expression levels of LFA-1. We observed that NEU3-treated cells had suppressed LFA-1 adhesion to an ICAM-1 coated surface using an in vitro static adhesion assay. These results establish that NEU3 can modulate glycoconjugate composition and contribute to the regulation of integrin activity. We propose that NEU3 should be investigated to determine its role on LFA-1 within the inflammatory cascade.
The human neuraminidase enzymes (NEU1, NEU2, NEU3, and NEU4) are a class of enzymes implicated in pathologies including cancer and diabetes. Several reports have linked neuraminidase activity to the regulation of cell migration in cancer cells. Using an in vitro cell migration assay on fibronectin (FN) coated surfaces, we have investigated the role of these enzymes in integrin-mediated cell migration. We observed that neuraminidase inhibition caused significant retardation of cell migration in breast cancer (MDA-MB-231) and prostate cancer (PC-3) cell lines when using inhibitors of NEU3 and NEU4. In contrast, inhibition of NEU1 caused a significant increase in cell migration for the same cell lines. We concluded that the blockade of human neuraminidase enzymes with isoenzyme-selective inhibitors can lead to disparate results and has significant potential in the development of anticancer or wound healing therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.