Signal transduction by G-protein-coupled receptors is regulated by various mechanisms acting at the receptor level; those studied most thoroughly are from the beta-adrenergic receptor/Gs/adenylyl cyclase system. We report here a regulatory mechanism occurring at the level of the G proteins themselves. A protein with M(r) 33,000 that inhibits Gs-GTPase activity was purified from bovine brain. This protein is very similar or identical to phosducin, a protein previously thought to be specific for retina and pineal gland. Recombinant phosducin inhibited the GTPase activity of several G proteins, and also inhibited Gs-mediated adenylyl cyclase activation. Blockade of its inhibitory effects by protein kinase A suggests that phosducin may be part of a complex regulatory network controlling G-protein-mediated signalling.
The beta-adrenergic receptor system of the failing human heart is markedly desensitized. We have recently postulated that this desensitization may in part be caused by an increase in beta-adrenergic receptor kinase (beta ARK) expression. beta ARK is thought to effect desensitization by acting in concert with an inhibitor protein, called beta-arrestin. Two isoforms have been identified both for beta ARK and for beta-arrestin. In the present study, we have investigated the expression of the individual isoforms of beta-arrestin and of beta ARK in left ventricles from failing and control human hearts. mRNAs for all four proteins, beta-arrestin-1, beta-arrestin-2, beta ARK-1, and beta ARK-2, were identified in human heart. Quantitation by reverse-transcription polymerase chain reactions showed that in heart failure there were no changes of the mRNA levels for beta-arrestin-1 and beta-arrestin-2, a slight (< 50%) increase of the mRNA for beta ARK-2, and a threefold increase for beta ARK-1 mRNA. At the protein level, beta-arrestin-1 was readily detected by Western blotting in human heart. Its absolute values were approximately 350 fmol/mg cytosolic protein, and its expression was not changed in heart failure. beta-Arrestin-2 levels were too low to be detectable using the same methods. beta ARK levels as determined by enzymatic activity were approximately 20 fmol/mg cytosolic protein (beta ARK-1 plus beta ARK-2) and thus almost 20-fold lower than those of beta-arrestin. beta ARK levels were increased approximately twofold in heart failure.(ABSTRACT TRUNCATED AT 250 WORDS)
beta-arrestin is a cytosolic protein thought to be responsible for uncoupling agonist-activated beta 2-adrenergic receptors from their guanine-nucleotide-binding proteins (G-protein) subsequent to receptor phosphorylation by the beta-adrenergic receptor kinase (beta ARK). In order to investigate this interaction, we generated a recombinant baculovirus for the expression of beta-arrestin in Sf9 insect cells. Apparently homogeneous beta-arrestin preparations were obtained in a one-step purification on heparin-Sepharose. Purified beta-arrestin bound to rhodopsin in a phosphorylation-dependent plus light-dependent manner. Binding to beta 2-adrenergic receptors was investigated using purified receptors reconstituted into lipid vesicles. The accessibility of the reconstituted receptors was determined using the agonist isoproterenol for the ligand-binding site and an antibody binding to an attached myc tag for the C-terminus, the site of receptor phosphorylation. On the basis of these data, the binding of purified beta-arrestin to beta ARK-phosphorylated beta 2-adrenergic receptors was found to occur with a KD of 1.8 nM and with a maximum of 1 beta-arrestin/receptor. beta-arrestin also bound to receptors which had been completely dephosphorylated with acid phosphatase, but the affinity was approximately 30-fold lower. In contrast to regulation by phosphorylation, binding of agonists or antagonists to the receptors had negligible effects on beta-arrestin binding. Finally, beta-arrestin and beta ARK were shown to be capable of producing synergistic inhibition of beta 2-adrenergic-receptor-stimulated adenylyl cyclase activity of cell membranes. These data show that high-affinity stoichiometric binding of beta-arrestin to beta 2-adrenergic receptors occurs in a beta ARK-dependent manner and is sufficient to impair adenylyl cyclase stimulation by the receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.