Objectives: Oncostatin M (OSM), a pleiotropic cytokine and a member of the gp130/IL-6 cytokine family, has been implicated in the pathogenesis of autoimmune diseases. Here we investigate the mechanisms by which its synergistic interactions with TNFα regulate the cellular bioenergetics and invasive function of synovial cells from patients with Rheumatoid Arthritis. Methods: Primary RA synovial fibroblasts (RAFLS) and human umbilical vein endothelial cells (HUVEC) were cultured with OSM alone or in combination with TNFα. Pro-inflammatory cytokines, angiogenic growth factors and adhesion molecules were quantified by real-time PCR and ELISA. Invasion, angiogenesis and cellular adhesion were quantified by Transwell invasion chambers, Matrigel tube formation assays, and adhesion binding assays. Cellular bioenergetics was assessed using the Seahorse XFe96 Analyser. Key metabolic genes (GLUT-1, HK2, PFKFB3, HIF1α, LDHA, PKM2) and transcription factor STAT3 were measured using real-time PCR and western blot. Results: OSM differentially regulates pro-inflammatory mediators in RAFLS and HUVEC, with IL-6, MCP-1, ICAM-1, and VEGF all significantly induced, in contrast to the observed inhibition of IL-8 and GROα, with opposing effects observed for VCAM-1 depending on cell type. Functionally, OSM significantly induced angiogenic network formation, adhesion, and invasive mechanisms. This was accompanied by a change in the cellular bioenergetic profile of the cells, where OSM significantly increased the ECAR/OCR ratio in favor of glycolysis, paralleled by induction of the glucose transporter GLUT-1 and key glycolytic enzymes (HK2, PFKFB3, HIF1α). OSM synergizes with TNFα to differentially regulate pro-inflammatory mechanisms in RAFLS and HUVEC. Interestingly, OSM differentially synergizes with TNFα to regulate metabolic reprogramming, where induction of glycolytic activity with concomitant attenuation of mitochondrial respiration and ATP activity was demonstrated in RAFLS but not in HUVEC. Finally, we identified a mechanism, whereby the combination of OSM with TNFα induces transcriptional activity of STAT3 only in RAFLS, with no effect observed in HUVEC. Conclusion: STAT3 mediates the differential effects of OSM and TNFα on RAFLS and EC function. Targeting OSM or downstream signaling pathways may lead to new potential therapeutic or adjuvant strategies, particularly for those patients who have sub-optimal responses to TNFi.
Rheumatoid arthritis is characterized by synovial proliferation, neovascularization and leucocyte extravasation leading to joint destruction and functional disability. The blood vessels in the inflamed synovium are highly dysregulated, resulting in poor delivery of oxygen; this, along with the increased metabolic demand of infiltrating immune cells and inflamed resident cells, results in the lack of key nutrients at the site of inflammation. In these adverse conditions synovial cells must adapt to generate sufficient energy to support their proliferation and activation status, and thus switch their cell metabolism from a resting regulatory state to a highly metabolically active state. This alters redox-sensitive signalling pathways and also results in the accumulation of metabolic intermediates which, in turn, can act as signalling molecules that further exacerbate the inflammatory response. The RA synovium is a multi-cellular tissue, and while many cell types interact to promote the inflammatory response, their metabolic requirements differ. Thus, understanding the complex interplay between hypoxia-induced signalling pathways, metabolic pathways and the inflammatory response will provide better insight into the underlying mechanisms of disease pathogenesis. OTHER ARTICLES PUBLISHED IN THIS REVIEW SERIESTranslating immunometabolism: towards curing human diseases by targeting metabolic processes underpinning the immune response. Clinical and Experimental Immunology 2019, 197: 141-142. T cell metabolism in chronic viral infection. Clinical and Experimental Immunology 2019, 197: 143-152. Sculpting tumor microenvironment with immune system: from immunometabolism to immunoediting. Clinical and Experimental Immunology 2019, 197: 153-160. Sensing between reactions -how the metabolic microenvironment shapes immunity.
IntroductionThis study investigates the metabolic activity of circulating monocytes and their impact on pro‐inflammatory responses in RA and explores whether this phenotype is already primed for inflammation before clinical manifestations of disease.MethodsBlood was collected and CD14+ monocytes isolated from healthy control donors (HC), individuals at‐risk (IAR) and RA patients. Monocyte frequency in blood and synovial tissue was assessed by flow cytometry. Inflammatory responses and metabolic analysis ± specific inhibitors were quantified by RT‐PCR, Western blot, migration assays, Seahorse‐XFe‐technology, mitotracker assays and transmission electron microscopy. Transcriptomic analysis was performed on HC, IAR and RA synovial tissue.ResultsCD14+ monocytes from RA patients are hyper‐inflammatory following stimulation, with significantly higher expression of cytokines/chemokines than those from HC. LPS‐induced RA monocyte migratory capacity is consistent with increased monocyte frequency in RA synovial tissue. RA CD14+ monocytes show enhanced mitochondrial respiration, biogenesis and alterations in mitochondrial morphology. Furthermore, RA monocytes display increased levels of key glycolytic enzymes HIF1α, HK2 and PFKFB3 and demonstrate a reliance on glucose consumption, blockade of which abrogates pro‐inflammatory mediator responses. Blockade of STAT3 activation inhibits this forced glycolytic flux resulting in metabolic reprogramming and resolution of inflammation. Interestingly, this highly activated monocytic phenotype is evident in IAR of developing disease, in addition to an enhanced monocyte gene signature observed in synovial tissue from IAR.ConclusionRA CD14+ monocytes are metabolically re‐programmed for sustained induction of pro‐inflammatory responses, with STAT3 identified as a molecular regulator of metabolic dysfunction. This phenotype precedes clinical disease onset and may represent a potential pathway for therapeutic targeting early in disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.