The recent Zika virus (ZIKV) and chikungunya virus (CHIKV) epidemics highlight the explosive nature of arthropod-borne (arbo)viruses transmitted by Aedes spp. mosquitoes 1,2. Vector competence and the extrinsic incubation period (EIP) are two key entomological parameters used to assess the public health risk posed by arboviruses 3. These are typically measured empirically by offering mosquitoes an infectious bloodmeal and temporally sampling mosquitoes to determine infection and transmission status. This approach has been used for the better part of a century; however, it does not accurately capture the biology and behavior of many mosquito vectors which refeed frequently (every 2-3 days) 4. Here we demonstrate that acquisition of a second noninfectious bloodmeal significantly shortens the EIP of ZIKV-infected Ae. aegypti by enhancing Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
MERS-CoV is present in dromedary camels throughout the Middle East and Africa. Dromedary camels are the primary zoonotic reservoir for human infections. Interruption of the zoonotic transmission chain from camels to humans, therefore, may be an effective strategy to control the ongoing MERS-CoV outbreak. Here we show that vaccination with an adjuvanted MERS-CoV Spike protein subunit vaccine confers complete protection from MERS-CoV disease in alpaca and results in reduced and delayed viral shedding in the upper airways of dromedary camels. Protection in alpaca correlates with high serum neutralizing antibody titers. Lower titers of serum neutralizing antibodies correlate with delayed and significantly reduced shedding in the nasal turbinates of dromedary camels. Together, these data indicate that induction of robust neutralizing humoral immune responses by vaccination of naïve animals reduces shedding that potentially could diminish the risk of zoonotic transmission.
Partitiviruses are segmented, multipartite dsRNA viruses that until recently were only known to infect fungi, plants, and protozoans. Metagenomic surveys have revealed that partitivirus-like sequences are also commonly associated with arthropods. One arthropod-associated partitivirus, galbut virus, is common in wild populations of Drosophila melanogaster. To begin to understand the processes that underlie this virus's high global prevalence, we established colonies of wild-caught infected flies. Infection remained at stably high levels over three years, with between 63-100% of individual flies infected. Galbut virus infects fly cells and replicates in tissues throughout infected adults, including reproductive tissues and the gut epithelium. We detected no evidence of horizontal transmission via ingestion but vertical transmission from either infected females or infected males was ∼100% efficient. Vertical transmission of a related partitivirus, verdadero virus, that we discovered in a laboratory colony of Aedes aegypti mosquitoes was similarly efficient. This suggests that efficient biparental vertical transmission may be a feature of at least a subset of insect-infecting partitiviruses. To study the impact of galbut virus infection free from the confounding effect of other viruses, we generated an inbred line of flies with galbut virus as the only detectable virus infection. We were able to transmit infection experimentally via microinjection of homogenate from these galbut-only flies. This sets the stage for experiments to understand the biological impact and possible utility of partitiviruses infecting model organisms and disease vectors. IMPORTANCE Galbut virus is a recently discovered partitivirus that is extraordinarily common in wild populations of the model organism Drosophila melanogaster. Like most viruses discovered through metagenomics, most of the basic biological questions about this virus remain unanswered. We found that galbut virus, along with a closely related partitivirus found in Aedes aegypti mosquitoes, is transmitted from infected females or males to offspring with ∼100% efficiency and can be maintained in laboratory colonies over years. This efficient transmission mechanism likely underlies the successful spread of these viruses through insect populations. We created Drosophila lines that contained galbut virus as the only virus infection and showed that these flies can be used as a source for experimental infections. This provides insight into how arthropod-infecting partitiviruses may be maintained in nature and sets the stage for exploration of their biology and potential utility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.