Extensive research has demonstrated that eye-tracking tasks can effectively indicate cognitive impairment. For example, lab-based eye-tracking tasks, such as the antisaccade task, have robustly distinguished between people with Alzheimer’s disease (AD) and healthy older adults. Due to the neurodegeneration associated with AD, people with AD often display extended saccade latencies and increased error rates on eye-tracking tasks. Although the effectiveness of using eye tracking to identify cognitive impairment appears promising, research considering the utility of eye tracking during naturalistic tasks, such as reading, in identifying cognitive impairment is limited. The current review identified 39 articles assessing eye-tracking distinctions between people with AD, mild cognitive impairment (MCI), and healthy controls when completing naturalistic task (reading, real-life simulations, static image search) or a goal-directed task involving naturalistic stimuli. The results revealed that naturalistic tasks show promising biomarkers and distinctions between healthy older adults and AD participants, and therefore show potential to be used for diagnostic and monitoring purposes. However, only twelve articles included MCI participants and assessed the sensitivity of measures to detect cognitive impairment in preclinical stages. In addition, the review revealed inconsistencies within the literature, particularly when assessing reading tasks. We urge researchers to expand on the current literature in this area and strive to assess the robustness and sensitivity of eye-tracking measures in both AD and MCI populations on naturalistic tasks.
Motor imagery (MI), the mental simulation of movement in the absence of overt motor output, has demonstrated potential as a technique to support rehabilitation of movement in neurological conditions such as Parkinson's disease (PD).Existing evidence suggests that MI is largely preserved in PD, but previous studies have typically examined global measures of MI and have not considered the potential impact of individual differences in symptom presentation on MI. The present study investigated the influence of severity of overall motor symptoms, bradykinesia and tremor on MI vividness scores in 44 individuals with mild to moderate idiopathic PD. Linear mixed effects modelling revealed that imagery modality and the severity of left side bradykinesia significantly influenced MI vividness ratings. Consistent with previous findings, participants rated visual motor imagery (VMI) to be more vivid than kinesthetic motor imagery (KMI). Greater severity of left side bradykinesia (but not right side bradykinesia) predicted increased vividness of KMI, while tremor severity and overall motor symptom severity did not predict vividness of MI. The specificity of the effect of bradykinesia to the left side may reflect greater premorbid vividness for the dominant (right) side or increased
Successful interaction within one’s environment is contingent upon one’s ability to accurately perceive the extent over which actions can be performed, referred to as action boundaries. As our possibilities for action are subject to variability, it is necessary for individuals to be able to update their perceived action boundaries to accommodate for variance. While research has shown that individuals can update their action boundaries to accommodate for variability, it is unclear how the perceptual system calibrates to this variance to inform our action boundaries. This study investigated the influence of perceptual motor variability by analysing the effect of random and systematic variability on perceived grasp ability in virtual reality. Participants estimated grasp ability following perceptual-motor experience with a constricted, normal, extended, or variable grasp. In Experiment 1, participants experienced all three grasping abilities (constricted, normal, extended) 33% of the time. In Experiment 2 participants experienced the constricted and normal grasps 25% of the time, and the extended grasp 50% of the time. The results indicated that when perceptual-motor feedback is inconsistent, the perceptual system disregards the frequency of perceptual-motor experience with the different action capabilities and considers each action capability experienced as a type, and subsequently calibrates to the average action boundary experienced by type.
Individuals drastically overestimate geographic slant. Research has suggested this occurs as the amount of energy it would take to ascend the slope modulates the perceived steepness. Numerous studies have provided evidence that alterations in current physiological potential can influence perceptions of geographical slant. However, it is unclear whether these influences are solely due to one’s actual physiological state or whether anticipation of energy expenditure also influences perceived slope. To investigate this, we manipulated anticipated energy expenditure while maintaining actual physiological state by altering the coupling between optic flow and gait. Using virtual reality, we calibrated individuals to either large changes (low anticipated expenditure) or small changes (large anticipated expenditure) in optic flow when walking at the same speed. Following optic flow calibration, individuals estimated slopes of various degrees. The results obtained provide evidence that perceptions of geographical slant are influenced by anticipated energy expenditure.
Successful interaction within the environment is contingent upon one’s ability to accurately perceive the extent over which they can successfully perform actions, known as action boundaries. Healthy young adults are accurate in estimating their action boundaries and can flexibly update them to accommodate stable changes in their action capabilities. However, there are conditions in which motor abilities are subject to variability over time such as in Parkinson’s disease (PD). PD impairs the ability to perform actions and can lead to variability in perceptual-motor experience, but the effect on the perceptions of their action boundaries remains unknown. This study investigated the influence of altered perceptual-motor experience during PD, on the perceptions of action boundaries for reaching, grasping, and aperture passing. Thirty participants with mild-to-moderate idiopathic PD and 26 healthy older adults provided estimates of their reaching, grasping, and aperture-passing ability. Participants’ estimates were compared with their actual capabilities. There was no evidence that individuals with PD’s perceptions were less accurate than those of healthy controls. Furthermore, there was some evidence for more conservative estimates than seen in young healthy adults in reaching (both groups) and aperture passing (PD group). This suggests that the ability to judge action capabilities is preserved in mild to moderate PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.