Expression of oocyte maturation genes was affected by vitrification procedure and conditions. Using EG alone for vitrification of bovine immature COCs, resulted in higher expression of GDF9, BMP15 and production of more in vitro matured and cleaved oocytes.
Background: Nicotinic acid (niacin) is a broad-spectrum lipid-modifying agent that has potent antioxidant properties and reduces the production of lipid peroxidation.
Objective: The purpose of the present study was to investigate the maturation, embryo development and cryo-tolerance merit, and levels of malondialdehyde (MDA), total oxidant status, and total antioxidant capacity following the supplementation of bovine oocytes maturation medium with different concentrations of niacin.
Materials and Methods: Immature cumulus-oocyte complexes were cultured in tissue culture medium-199 maturation media supplemented with 0, 100, 200, and 400 µM niacin under a standard in vitro culture condition. After 24 hr of culture, the nuclear maturation rate was assessed. Then, two groups of immature cumulus-oocyte complexes were cultured in TCM-199 either with or without 400 µM niacin and evaluated for embryo development. Also, matured cumulus-oocyte complexes in both groups were frozen using a standard vitrification procedure. After vitrification, oocytes were warmed in two steps and evaluated for embryo development. In addition, the level of total antioxidant capacity, total oxidant status, and MDA were measured.
Results: The results indicated that although the treatment with 400µM niacin increased in vitro nuclear maturation (87.6 ± 5.3), it did not improved the embryo development to the blastocyst stage. Higher cleavage and blastocyst rates were observed in vitrified oocytes that were cultured with supplemented 400 µM niacin compared to the control group (without niacin) (53.6 ± 2.7 and 10.6 ± 1.6 vs. 46.2 ± 4.1 and 6.3 ± 2.4, respectively). Also, the addition of 400 µM niacin to the maturation media could decrease MDA levels after maturation.
Conclusion: Niacin could improve the quality of in vitro embryo production (IVP) embryos and tolerance of bovine oocytes to vitrification.
Key words: Bovine, Embryonic development, Niacin, Oocytes, Vitrification.
Background
Sperm freezing and cold storage are the two most common assisted reproductive technologies in the canine breeding industry. The freeze-thawing process causes significant detrimental changes in both sperm cell structure and function. Previous research has confirmed that excessive accumulation of un-scavenged free radicals (oxidative stress) plays an important role in the cryopreservation-induced damage to sperm cells. Also, the gradual accumulation of the free radicals during cold storage leads to a decline in the sperm quality markers. Melatonin is an endogenous neurohormone synthesized from tryptophan amino acid by pineal glands. Besides its several well-known physiologic roles, melatonin has a significant antioxidant potential through direct free radical scavenging properties. Therefore, the current study was designed to evaluate the potential in vitro protective properties of melatonin (0.5, 1, and 2 mM) on canine sperm cells after freezing or during long-term cold storage (9 days, 5 °C) on most important sperm in vitro fertility markers.
Results
Melatonin at 0.5, 1- or 2-mM concentrations could preserve significantly higher sperm total motility after 4 days of cold storage. However, only the 1- and 2 mM melatonin concentrations could result in better TM and PM values after 7 days of cold storage. Furthermore, melatonin supplementation could preserve higher sperm viability and acrosome integrity after 7 days of storage. Also, it could have significant protective effects on the cooled sperm DNA integrity. In the freezing section of the current research, melatonin at either 1- or 2-mM concentrations could not improve the sperm post-thaw TM and PM, whereas they improved sperm DNA integrity. Also, the post-thaw plasma membrane functional integrity and sperm velocity parameters were not affected by the treatment. Although DMSO (Dimethyl Sulfoxide) as the melatonin solvent could reduce the level of sperm lipid peroxidation and even improve the post-thaw sperm DNA integrity compared to the negative control, it reduced the post-thaw sperm progressive motility. However, the negative effects were reversed by concurrent melatonin supplementation at 1- and 2-mM concentrations.
Conclusion
The addition of 1- or 2-mM melatonin to the canine sperm freezing and cooling media could improve sperm motility, viability, acrosome, and DNA integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.