The cat state, known as the superposition of coherent states, has broad applications in quantum computation and quantum metrology. Increasing the number of optical cat states is crucial to implement complex quantum information tasks based on them. Here, two optical cat states are prepared simultaneously based on a nondegenerate optical parametric amplifier. By subtracting one photon from each of two squeezed vacuum states, two odd cat states with orthogonal superposition direction in phase space are prepared simultaneously, which have similar fidelity of 60% and amplitude of 1.2. Compared with the traditional method to generate two odd optical cat states based on two degenerate optical parametric amplifiers, only one nondegenerate optical parametric amplifier is applied in this experiment, which saves half of the quantum resources of nonlinear cavities. The presented results make a step toward preparing the four‐component cat state, which has potential applications in fault‐tolerant quantum computation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.