Lake Taihu, a typical shallow lake in eastern China, was selected for study in this paper. Methods: Considering that the accurate parameterization scheme is the key to a lake breeze simulation, then based on Lake Taihu’s characteristics, the setting of parameters of the lakes’ scheme was adjusted in the WRF (Weather Research and Forecasting Model) lake model. Results: By comparing the observed values of the mesoscale flux platform of Lake Taihu from June to August 2012, the results showed that the model significantly improved the simulation. The root-mean-square error of the simulated and observed comparison of the latent heat fluxes over the lake improved from 42.77 to 89.00. The adjusted WRF-Lake model better presents the characteristics of Lake Taihu’s lake wind. The different lake depth cases showed that the maximum difference in surface temperature between the shallow lake case and the deep lake case reached 9.9 °C, and the average was about 3 °C. Conclusion: Compared with the deep lake case, the shallow lake case stimulated less lake breeze circulation with a shorter time and smaller range in the horizontal and vertical directions. The lake breeze frequency, simulated by the shallow lake case, was 18.5%, while for the deep lake case, it reached 38%. These simulations of lake breeze contribute to understanding the influence of a lake’s depth on lake breeze characteristics and the accurate parameterization scheme of the inland shallow lakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.