A sensitive and rapid assay method for the specific detection of bacteria was developed using Escherichia coli and Salmonella newport as the test organisms. Bacteriophages were used to provide specific lysis of the bacteria and then the release of cell contents was measured by ATP bioluminescence. Increased sensitivity was obtained by focusing on the bacteria's adenylate kinase (AK) as the cell marker instead of ATP as conventionally used. Fewer than 103E. coli cells could be readily detected in less than 1 h. Salmonella newport assays, although as sensitive, were slower and took up to 2 h. The effects of the culture medium, the phage, and the presence of non‐specific bacteria were examined.
PurposeRNA sequencing analysis has demonstrated bidirectional changes in metabolism, structural and immune pathways during early induction of defocus induced myopia. Thus, the aim of this study was to investigate whether similar gene pathways are also related to the more excessive axial growth, ultrastructural and elemental microanalytic changes seen during the induction and recovery from form-deprivation myopia (FDM) in chicks and predicted by the RIDE model of myopia.MethodsArchived genomic transcriptome data from the first three days of induction of monocularly occluded form deprived myopia (FDMI) in chicks was obtained from the GEO database (accession # ) while data from chicks monocularly occluded for 10 days and then given up to 24 h of normal visual recovery (FDMR) were collected. Gene set enrichment analysis (GSEA) software was used to determine enriched pathways during the induction (FDMI) and recovery (FDMR) from FD. Curated gene-sets were obtained from open access sources.ResultsClusters of significant changes in mitochondrial energy metabolism, neurotransmission, ion channel transport, G protein coupled receptor signalling, complement cascades and neuron structure and growth were identified during the 10 days of induction of profound myopia and were found to correlate well with change in axial dimensions. Bile acid and bile salt metabolism pathways (cholesterol/lipid metabolism and sodium channel activation) were significantly upregulated during the first 24 h of recovery from 10 days of FDM.ConclusionsThe gene pathways altered during induction of FDM are similar to those reported in defocus induced myopia and are established indicators of oxidative stress, osmoregulatory and associated structural changes. These findings are also consistent with the choroidal thinning, axial elongation and hyperosmotic ion distribution patterns across the retina and choroid previously reported in FDM and predicted by RIDE.
Despite growing evidence for platelets as active players in infection and immunity, it remains unresolved whether platelets contribute to, or are key elements in the development of neuroinflammation. Using the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis, we identified platelet accumulation in the circulation by 7-day postinduction (dpi), ahead of clinical onset which occurs at 13-14 dpi. By inducing platelet depletion between 7 and 16 dpi, we demonstrate an association between platelet accumulation in the spinal cord and disease development. Additionally, we provide evidence for platelet infiltration in the white and gray matter parenchyma, but with different outcomes. Thus, while in white matter platelets are clearly associated with lesions, in gray matter large-scale platelet infiltration and expression of the platelet-specific molecule PF4 are detectable prior to T cell entry. In the retina, platelet accumulation also precedes clinical onset and is associated with significant increase in retinal thickness in experimental relative to control animals. Platelet accumulation increases over the disease course in this tissue, but without subsequent T cell infiltration. These findings provide definitive confirmation that platelet accumulation is key to EAE pathophysiology. Furthermore, they suggest an undescribed and, most importantly, therapeutically targetable mechanism of neuronal damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.