This work is part of the resolution of problems encountered on a 225 KV MANGOMBE-OYOMABANG line. This line is characterized by important technical losses, so that the voltage injected in the busbar is always lower than 200 kV. The main objective of this work is to show the new solutions that can provide a combined FACTS-STATCOM and IPC 240 dual system on this line. Then to show the limitation of STATCOM compared to RPI 240. The results obtained allowed us to observe that in symmetrical operation the STATCOM improves the voltage profile on the busbar and in asymmetrical operation we found that it continues to regulate the voltage of each phase despite the unbalance. But the system remains too unbalanced because of the sequence current flow. The IPC 240 corrects this limitation, allowing asymmetrical operation of the line in an emergency while providing continuous service to the load.
Transformers have always used mineral oil as a liquid dielectric, and scientists have noted its harmful effects on human health and the environment. For more than two years, these vegetable oils have been positioned as real substitutes for mineral oils in view of their excellent physical, chemical and thermal properties. However, being oils sometimes intended for human consumption, such as sunflower oil, corn oil, olive oil, rapeseed oil, soya oil, rice bran oil, coconut oil, palm oil and many others, it is imperative to orientate the use of these oils towards the needs of the population. It is imperative to direct their use to natural non-edible esters in order to avoid a food shortage. Work is being done in this direction, but these are not yet fully determined in terms of their physico-thermal properties as in mineral and other edible oils. This work is a contribution to the determination and analysis of the physico-thermal properties of palm kernel and castor oil methyl esters (PKOME and COME) at variable temperatures. A comparison of the behavioural results with mineral oil (MO) widely used in processors shows a similar trend. Also, the values obtained by extrapolation at room temperature are compared to the values found in the literature concerning: relative density, we have a relative error of 3.47% for PKOME, 0.10% for COME, for kinematic viscosity we have a relative error of 8% for PKOME and 1.46% for COME. The second order polynomial correlations established from the measurements have a coefficient of determination close to 1. The values obtained from these correlations are in accordance with the expectations of ASTM D 1217 for relative density, ISO 3104 for kinematic viscosity, ASTM D 7896 for thermal conductivity and the adiabatic calorimetry method for specific heat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.