Endothelial dysfunction initiates and exacerbates hypertension, atherosclerosis and other cardiovascular complications in diabetic mellitus. FGF21 is a hormone that mediates a number of beneficial effects relevant to metabolic disorders and their associated complications. Nevertheless, it remains unclear as to whether FGF21 ameliorates endothelial dysfunction. Therefore, we investigated the effect of FGF21 on endothelial function in both type 1 and type 2 diabetes. We found that FGF21 reduced hyperglycemia and ameliorated insulin resistance in type 2 diabetic mice, an effect that was totally lost in type 1 diabetic mice. However, FGF21 activated AMPKα, suppressing oxidative stress and enhancing endothelium-dependent vasorelaxation of aorta in both types, suggesting a mechanism that is independent of its glucose-lowering and insulin-sensitizing effects. In vitro, we identified a direct action of FGF21 on endothelial cells of the aorta, in which it bounds to FGF receptors to alleviate impaired endothelial function challenged with high glucose. Furthermore, the CaMKK2-AMPKα signaling pathway was activated to suppress oxidative stress. Apart from its anti-oxidative capacity, FGF21 activated eNOS to dilate the aorta via CaMKK2/AMPKα activation. Our data suggest expanded potential uses of FGF21 for the treatment of vascular diseases in diabetes.
Hotspot mutations in the core promoter region of the telomerase reverse transcriptase (TERT) gene have been well established to associate with aggressive clinical characteristics, radioiodine refractory, tumor recurrence, and mortality in thyroid cancer. Several E-twenty-six (ETS) transcription factors were reported to selectively bound to the mutant TERT promoter and activated TERT expression. In this study we aimed to investigate whether TERT promoter mutations confer sensitivity to ETS inhibitor YK-4-279 in thyroid cancer cells and whether this inhibitor could be served as a potential therapeutic agent for thyroid cancer. In vitro assays showed that YK-4-279 treatment sharply suppressed cell viability, colony formation, migration, and invasion, as well as induced cell cycle arrest and apoptosis in a panel of thyroid cancer cells. The cell viability after YK-4-279 treatment was similar between cell lines harboring mutant and wild-type TERT promoters. Furthermore, YK-4-279 treatment reduced both luciferase activity and mRNA expression of TERT independent of TERT promoter mutation status. Data from RNA-seq further revealed that YK-4-279 significantly affected biological processes including DNA replication and cell cycle. Reduced DNA helicase activity and decreased expression of several helicase genes were observed after YK-4-279 treatment. Moreover, YK-4-279 significantly inhibited tumor growth and induced apoptosis in a xenograft mice model. Thus, ETS inhibitor YK-4-279 suppressed TERT expression and conferred anti-tumor activity in a TERT promoter mutation-independent manner, and it could be a potential agent for the treatment of advanced thyroid cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.