Background/Aims: Mesenchymal stem cell (MSC) transplantation has emerged as an option for the treatment of chronic hepatic cirrhosis, while its therapeutic efficacy could be improved. The bcl-2 gene is anti-apoptotic and can help cell survival and proliferation. Therefore, we explored whether transplanted MSCs with enhanced bcl-2 expression may be beneficial in the treatment of experimental cirrhosis in rats. Methods: MSCs were isolated from rat bone marrow, expanded in vitro and transfected with adeno-associated virus (AAV) engineered the bcl-2 gene (AAV-bcl-2). Rats with cirrhosis induced by carbon tetrachloride (CCl4) were treated with AAV-bcl-2 infected BMSCs-AAV-bcl-2, with the cells traced in vivo post transplantation. Liver pathology and function were evaluated 7, 14, 21, and 28 days post transplantation, respectively. Results: On day 7 post transplantation, the infused AAV-bcl-2 had integrated into the hepatocyte-like cells (HLCs) that expressed albumin (ALB), Cytokeratin 18 (CK18), and hepatocytes nuclear factor 4a (HNF4a). On day 28 post transplantation, rats in the cirrhosis + BMSCs-AAV-bcl-2 group showed the most dense HLCs, highest mRNA and protein levels of ALB, CK18, and HNF4a, compared to the other groups. Their liver function recovered most rapidly in 4 week observation, while histological sign of cirrhosis remained at the end of this period. Conclusion: BMSCs over expressing bcl-2 gene showed better survival, and enhanced the differentiation into hepatocytes-like cells, and appeared to promote the recovery of liver function in rats with experimental cirrhosis.
Dental pulp stem cell (DPSC) transplantation has been demonstrated to promote the regeneration and repair of tissues and organs and is a potentially effective treatment for radioactive esophageal injury. In this study, to explore the therapeutic effects of DPSCs on acute radiation-induced esophageal injury, DPSCs were cultured and transplanted into rats with acute radioactive esophageal injuries induced by radioactive 125I seeds in vivo. In the injured esophagus, PKH26-labeled DPSCs co-localized with PCNA, CK14, CD71, and integrin α6, and the expression levels of these four makers of esophageal stem cells were significantly increased. After DPSC transplantation, the injured esophagus exhibited a greater thickness. In addition, the esophageal function and inflammation recovered faster. The results demonstrated that transplanted DPSCs, which trans-differentiated into esophageal stem cells in vivo, could repair the damaged esophageal tissue.
Introduction: Solitary rectal ulcer syndrome (SRUS) is rarely observed in young people and its clinical manifestations and endoscopic observations in young patients are atypical. Except for histopathological observations, SRUS can be hardly differentiated from other bowel diseases such as rectal carcinoma or ulceration. Case Report: The current report presented a case of SRUS in an 18-year-old male living in Harbin, China. The patient complained of gastrointestinal hemorrhage and abdominal pain as his first symptoms. SURS was diagnosed after colonoscopy supported by his complete recovery following the treatment with Etiasa. Issues relevant to the diagnosis and treatment of SURS were discussed in the current article. Conclusions: Employment of colonoscopy is a great help in the early diagnosis of SURS; thus, this technique has benefits for the treatment and recovery of patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.