Electrospinning is a new state-of-the-art technology for the preparation of electrodes for solid oxide fuel cells (SOFC). Electrodes fabricated by this method have been proven to have an experimentally superior performance compared with traditional electrodes. However, the lack of a theoretic model for electrospun electrodes limits the understanding of their benefits and the optimization of their design. Based on the microstructure of electrospun electrodes and the percolation threshold, a theoretical model of electrospun electrodes is proposed in this study. Electrospun electrodes are compared to fibers with surfaces that were coated with impregnated particles. This model captures the key geometric parameters and their interrelationship, which are required to derive explicit expressions of the key electrode parameters. Furthermore, the length of the triple phase boundary (TPB) of the electrospun electrode is calculated based on this model. Finally, the effects of particle radius, fiber radius, and impregnation loading are studied. The theory model of the electrospun electrode TPB proposed in this study contributes to the optimization design of SOFC electrospun electrode.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.