The used power batteries of new energy vehicles have become a combined issue of environmental pollution, resource scarcity, and economic sustainability. Power battery recycling is inevitably becoming the key link in the formation of the green closed-loop supply chain for new energy vehicles and the green cycle of the new energy vehicles industry. This study establishes a three-party evolutionary game model of “new energy vehicle manufacturers, power battery manufacturers, and power battery recyclers”, simulates the dynamic evolution process of each game player’s strategy, and analyzes the effects of the digital transformation factor and other factors leading to the evolution trend. The main results show that: (i) in the absence of sufficient incentives and constraints, the green closed-loop power battery supply chain cannot be formed naturally; (ii) digital transformation is an important factor in the journey of the green closed-loop supply chain for power battery recycling, and (iii) government rewards and penalties can promote the formation of the green closed-loop supply chain for power batteries. This research innovatively investigates the concept of the green closed-loop power battery supply chain and its formation mechanism, which provides theoretical support to promote the recycling of used power batteries to achieve sustainability.
In the face of the challenges posed by the need to drastically decrease carbon emissions, all agents in the supply chain need to strengthen low-carbon collaboration with the support of digital transformation. This study sets up a low-carbon collaboration evolutionary game model of the supply chain based on benefit sharing by introducing digital transformation. The equilibrium-point stability of the supply chain is then analyzed under two separate conditions—i.e., less and more government rewards and punishments compared to supply-chain agents’ strategic risk cost. Furthermore, based on the evolutionary game model, this study draws the system dynamics (SD) flow diagram to analyze the research problem quantitatively. The main results show that: (1) low-carbon benefit-driven effects promotes collaboration benefit sharing, thereby increasing the probability of low-carbon collaboration; (2) digital transformation is an essential regulator of low-carbon collaboration in the supply chain and can amplify the low-carbon benefit-driven effect; (3) collaboration benefit sharing can perfectly coordinate the vertical supply chain under low-carbon collaboration; and (4) government support and management are critical links in the low-carbon collaboration formation path of the supply chain. This research provides theoretical support for low-carbon collaboration in the supply chain under digital transformation.
Manufacturing is one of the vital carbon emission sources in China; its carbon emission reduction and carbon productivity improvement are the keys to the successful realization of “carbon peaking and carbon neutrality”. This paper investigates the impact of regional manufacturing digitalization on carbon productivity based on a panel data set covering 30 provinces in China over time from 2013 to 2020. We applied the mixed Ordinary Least-Squares (OLS) regression effect model and instrumental variable method, using a mediation effect model, and identified that technological innovation is the potential transmission channel of manufacturing digitalization affecting carbon productivity. The empirical results show that: (1) Digitalization of manufacturing can effectively contribute to increased carbon productivity. (2) Technological innovation plays a partial intermediary role in the impact of carbon productivity through the digitalization of manufacturing, and there is still much room for improvement. (3) Promoting the digitalization of manufacturing will promote technological innovation, which is an important influencing factor for manufacturing enterprises to enhance technological innovation. This research provides theoretical support for achieving carbon productivity in manufacturing in the context of digital development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.