Since concepts may have different meanings in different contexts, students have to learn to recontextualise them, i.e. to adapt their meanings to a new context. It is unclear, however, what characteristics a learning and teaching strategy for recontextualising should have. The study aims to develop such a learning and teaching strategy for cellular respiration. The strategy consists of a storyline, consisting of three contexts, with embedded cognitive elements and some episodes focussed on recontextualising cellular respiration. Testing the strategy in two classes in upper secondary biology education showed that the strategy was largely practicable.
ion is considered an essential aspect of computational thinking. Primary schools are starting to include computational thinking into the curriculum. However, in order to guide their support, teachers need to know how to recognize abstraction. In this paper, we present how we can observe abstraction in young children tasked with solving an algorithmic assignment. In order to operationalize abstraction, we have used the layers of abstraction (LOA) model by Perrenet, Groote and Kaasenbrood. This model was originally used in the field of computer science and describes programming behavior at the level of software development, but has since been extended for use in primary education. We have operationalized this model for use with 5 to 6 year old students tasked with programming an educational robot. Their behavior has been related to each of the four layers of abstraction.Students were individually instructed with programming Cubetto, an educational robot, to reach a number of destinations, increasing in the level of algorithmic complexity. We analyzed audio and video recordings of the students interacting with Cubetto and a teacher. Verbal and nonverbal behavior were categorized by two researchers and resulted in an observation schema.We conclude that our operationalization of the LOA model is promising for characterizing young students' abstraction. Future research is needed to operationalize abstraction for older primary school students.
In many science education practices, students are expected to develop an understanding of scientific knowledge without being allowed a view of the practices and cultures that have developed and use this knowledge. Therefore, students should be allowed to develop scientific concepts in relation to the contexts in which those concepts are used. Since many concepts are used in a variety of contexts, students need to be able to recontextualise and transfer their understanding of a concept from one context to another. This study aims to develop a learning and teaching strategy for recontextualising cellular respiration. This article focuses on students' ability to recontextualise cellular respiration. The strategy allowed students to develop their understanding of cellular respiration by exploring its use and meaning in different contexts. A pre-and post-test design was used to test students' understanding of cellular respiration. The results indicate that while students did develop an acceptable understanding of cellular respiration, they still had difficulty with recontextualising the concept to other contexts. Possible explanations for this ack of understanding are students' familiarity with the biological object of focus in a context, the manner in which this object is used in a context and students' understanding of specific elements of cellular respiration during the lessons. Although students did develop an adequate understanding of the concept, they do need more opportunities to practice recontextualising the concept in different contexts. Further research should focus on improving the strategy presented here and developing strategies for other core concepts in science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.