Hereditary pheochromocytoma (PCC) is often caused by germline mutations in one of nine susceptibility genes described to date, but there are familial cases without mutations in these known genes. We sequenced the exomes of three unrelated individuals with hereditary PCC (cases) and identified mutations in MAX, the MYC associated factor X gene. Absence of MAX protein in the tumors and loss of heterozygosity caused by uniparental disomy supported the involvement of MAX alterations in the disease. A follow-up study of a selected series of 59 cases with PCC identified five additional MAX mutations and suggested an association with malignant outcome and preferential paternal transmission of MAX mutations. The involvement of the MYC-MAX-MXD1 network in the development and progression of neural crest cell tumors is further supported by the lack of functional MAX in rat PCC (PC12) cells and by the amplification of MYCN in neuroblastoma and suggests that loss of MAX function is correlated with metastatic potential.
Malignant pheochromocytoma (PCC) and paraganglioma (PGL) are mostly caused by germline mutations of SDHB, encoding a subunit of succinate dehydrogenase. Using whole-exome sequencing, we recently identified a mutation in the FH gene encoding fumarate hydratase, in a PCC with an 'SDH-like' molecular phenotype. Here, we investigated the role of FH in PCC/PGL predisposition, by screening for germline FH mutations in a large international cohort of patients. We screened 598 patients with PCC/PGL without mutations in known PCC/PGL susceptibility genes. We searched for FH germline mutations and large deletions, by direct sequencing and multiplex ligation-dependent probe amplification methods. Global alterations in DNA methylation and protein succination were assessed by immunohistochemical staining for 5-hydroxymethylcytosine (5-hmC) and S-(2-succinyl) cysteine (2SC), respectively. We identified five pathogenic germline FH mutations (four missense and one splice mutation) in five patients. Somatic inactivation of the second allele, resulting in a loss of fumarate hydratase activity, was demonstrated in tumors with FH mutations. Low tumor levels of 5-hmC, resembling those in SDHB-deficient tumors, and positive 2SC staining were detected in tumors with FH mutations. Clinically, metastatic phenotype (P = 0.007) and multiple tumors (P = 0.02) were significantly more frequent in patients with FH mutations than those without such mutations. This study reveals a new role for FH in susceptibility to malignant and/or multiple PCC/PGL. Remarkably, FH-deficient PCC/PGLs display the same pattern of epigenetic deregulation as SDHB-mutated malignant PCC/PGL. Therefore, we propose that mutation screening for FH should be included in PCC/PGL genetic testing, at least for tumors with malignant behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.