Abstract. The organic fraction of atmospheric aerosols contains a multitude of compounds and usually only a small fraction can be identified and quantified. However, a limited number of representative organic compounds can be used to describe the water-soluble organic fraction. In this work, initiated within the EU 5FP project SMOCC, four mixtures containing various amounts of inorganic salts (ammonium sulfate, ammonium nitrate, and sodium chloride) and three model organic compounds (levoglucosan, succinic acid and fulvic acid) were studied. The interaction between water vapor and aerosol particles was studied at different relative humidities: at subsaturation using a hygroscopic tandem differential mobility analyzer (H-TDMA) and at supersaturation using a cloud condensation nuclei spectrometer (CCN spectrometer). Surface tensions as a function of carbon concentrations were measured using a bubble tensiometer. Parameterizations of water activity as a function of molality, based on hygroscopic growth, are given for the pure organic compounds and for the mixtures, indicating van't Hoff factors around 1 for the organics. The Zdanovskii-Stokes-Robinson (ZSR) mixing rule was tested on the hygroscopic growth of the mixtures and it was found to adequately explain the hygroscopic growth for 3 out of 4 mixtures, when the limited solubility of succinic acid is taken into account. One mixture containing sodium chloride was studied and showed a pronounced deviation from the ZSR mixing rule. Critical supersaturations calculated using the parameterizations of water activity and the measured surface tensions were compared with those determined experimentally.
Aliphatic straight-chain dicarboxylic acids have been identified as common water-soluble organic components of atmospheric aerosols. To model the partitioning of such compounds between gas and particle phase in the atmosphere, information about their vapor pressures is essential. In this work, vapor pressures of C3-C9 dicarboxylic acids are derived from measured evaporation rates of submicron aerosols over the temperature range of 290-314 K using the tandem differential mobility analyzer technique. Vapor pressures obtained from the experimental data were as follows: log(p°m alonic , Pa) ) -4822 K/T + 12.9, log(p°s uccinic , Pa) ) -7196.8 K/T + 19.8, p°g lutaric (296 K) ) 6.7 × 10 -4 Pa, log(p°a dipic , Pa) ) -8065.0 K/T + 22.2, log(p°p imelic , Pa) ) -7692.8 K/T + 21.8, log(p°s uberic , Pa) ) -9629.4 K/T + 26.5, and log(p°a zelaic , Pa) ) -7968.7 K/T + 21.7. Vapor pressures of C3-C9 dicarboxylic acids are shown to alternate strongly with the parity of the number of carbon atoms. Higher vapor pressures of the odd acids fit the less stable crystal structure, the propensity of polymorphism in the odd acids, and the evolution of melting temperatures. Results are compared with available literature data.
Abstract. Atmospheric aerosol particles typically consist of inorganic salts and organic material. The inorganic compounds as well as their hygroscopic properties are well defined, but the effect of organic compounds on cloud droplet activation is still poorly characterized. The focus of the present study is the organic compounds that are surface active i.e. tend to concentrate on droplet surface and decrease the surface tension. Gibbsian surface thermodynamics was used to find out how partitioning between droplet surface and the bulk of the droplet affects the surface tension and the surfactant bulk concentration in droplets large enough to act as cloud condensation nuclei. Sodium dodecyl sulfate (SDS) was used together with sodium chloride to investigate the effect of surfactant partitioning on the Raoult effect (solute effect). While accounting for the surface to bulk partitioning is known to lead to lowered bulk surfactant concentration and thereby to increased surface tension compared to a case in which the partitioning is neglected, the present results show that the partitioning also alters the Raoult effect, and that the change is large enough to further increase the critical supersaturation and hence decrease cloud droplet activation. The fraction of surfactant partitioned to droplet surface increases with decreasing droplet size, which suggests that surfactants might enhance the activation of larger particles relatively more thus leading to less dense clouds. Cis-pinonic acidammonium sulfate aqueous solutions were studied in order to study the partitioning with compounds found in the atmosphere and to find out the combined effects of dissolution and partitioning behavior. The results show that the partitioning consideration presented in this paper alters the shape of the Köhler curve when compared to calculations in which the partitioning is neglected either completely or in the Raoult effect. In addition, critical supersaturation was measured for SDS particles with dry radii of 25-60 nm using a static paralCorrespondence to: R. Sorjamaa (riikka.sorjamaa@uku.fi) lel plate Cloud Condensation Nucleus Counter. The experimentally determined critical supersaturations agree very well with theoretical calculations taking the surface to bulk partitioning fully into account and are much higher than those calculated neglecting the partitioning.
Introduction 4116 2. Theoretical Background and Framework for Atmospheric Aerosols 4117 2.1. Saturation Vapor Pressures 4117 2.2. Vapor−Liquid or Vapor−Solid Equilibria over Mixed Solutions 4118 2.3. Equilibria over Curved Surfaces 4118 2.4. Dynamic Evaporation and Condensation from and to an Aerosol Particle 4119 2.5. Ambient Partitioning 4120 3. Experimental Methods 4120 3.1. Knudsen-Cell-Based Methods 4121 3.1.1. Knudsen Mass Loss Methods 4121 3.
The Multiple Chamber Aerosol Chemical Aging Study (MUCHA-CHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models.atmospheric chemistry | biosphere-atmosphere interactions O rganic aerosol (OA) comprises a large fraction of fine-particle mass (PM 2.5 ) (1). In the developed world, 1-2% of deaths are blamed on inhalation of PM 2.5 (2), and the leading uncertainty in climate forcing is the interplay between the number of fine particles large enough to nucleate cloud droplets and the amount of sunlight reflected by those clouds (3). Oxidation and condensation of organics play a major but uncertain role in both phenomena.Traditional models treat most OA as nonvolatile primary OA (POA), augmented by secondary OA (SOA) (4), and they underpredict OA concentrations by a factor of 3-10 (5). α-Pinene is a major biogenic SOA source, sometimes used to represent all SOA in global models (4, 6). However, less than 20% of the carbon from fresh α-pinene oxidation condenses in chambers at room temperature; (7) the remainder is gaseous (Fig. 1A). This "chamber" SOA is modestly oxidized, with an oxygen to carbon ratio ðO∶CÞ < 0.4 (7). It is unambiguously semivolatile: Yields rise with increasing SOA mass loading (8, 9) and decreasing temperature (10), and the SOA evaporates upon heating (11-13) and after isothermal dilution (14).In contrast, ambient OA is highly oxidized (0.5 ≤ O∶C ≤ 1.0) (1, 15) and not very volatile (16). Ambient SOA is much less volatile than ambient POA (16). Consequently, "chamber" SOA does not represent the atmosphere. Our hypothesis is that homogeneous gas-phase aging by OH is a major missing process connecting chamber studies to the atmosphere. Considerable attention has been paid to heterogeneous uptake of oxidants to particles (17, 18), and recently gas-phase oxidation of semivolatile primary emissions (19), but the degree to which gas-phase oxidation can age chamber SOA is uncertain (1,4,18,20).OA resides in the atmosphere for about one week (21), while the gas-phase lifetimes of major semivolatile SOA constituents are far shorter. Typical α-pinene products pinonaldehyde, cispinonic acid, and pinic acid all have lifetimes of only a few hours for summertime conditions (22). Without question, oxidation of semivolatile SOA vapors will perturb the equilibrium phase partitioning of these constituents. Because almost all of the first-generation products are less volatile than α...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.