SummaryNumerous reports have been published over the last decade assessing the potential of plants as useful hosts for the heterologous expression of clinically useful proteins. Significant progress has been made, in particular, in optimizing transgene transcription and translation in plants, and in elucidating the complex post-translational modifications of proteins typical of the plant cell machinery. In this article, we address the important issue of recombinant protein degradation in plant expression platforms, which directly impacts on the final yield, homogeneity and overall quality of the resulting protein product. Unlike several more stable and structurally less complex pharmaceuticals, recombinant proteins present a natural tendency to structural heterogeneity, resulting in part from the inherent instability of polypeptide chains expressed in heterologous environments. Proteolytic processing, notably, may dramatically alter the structural integrity and overall accumulation of recombinant proteins in plant expression systems, both in planta during expression and ex planta after extraction. In this article, we describe the current strategies proposed to minimize protein hydrolysis in plant protein factories, including organ-specific transgene expression, organelle-specific protein targeting, the grafting of stabilizing protein domains to labile proteins, protein secretion in natural fluids and the co-expression of companion protease inhibitors.
Plant cystatins have been the object of intense research since the publication of a first paper reporting their existence more than 20 years ago. These ubiquitous inhibitors of Cys proteases play several important roles in plants, from the control of various physiological and cellular processes in planta to the inhibition of exogenous Cys proteases secreted by herbivorous arthropods and pathogens to digest or colonize plant tissues. After an overview of current knowledge about the evolution, structure and inhibitory mechanism of plant cystatins, we review the different roles attributed to these proteins in plants. The potential of recombinant plant cystatins as effective pesticidal proteins in crop protection is also considered, as well as protein engineering approaches adopted over the years to improve their inhibitory potency and specificity towards Cys proteases of biotechnological interest.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.