This paper presents the results of subtask dealing with the bond behavior study of the reinforcement systems under monotonic loading pull-out tests. This numerical method is based on the slip and the bond stress distributions through the anchored length of the bar in the concrete block. The work refers, especially to the implementation of reinforcing bars and bond-slip models between steel and concrete in the developed finite element program. For the application of the proposed method, three analytical expressions of bond-slip relationship are selected. The obtained results are presented and commented with the fundamental characteristics of plain concrete and reinforced concrete members. The bond models in contribution with concrete and reinforcing steel provide a relativity good representation of bond-zone system responses.
In order to understand the dynamic behavior of bridges under the passage of convoys of moving vehicles, it was necessary to start with the example of a single moving force, however, this study was deemed insufficient because the bridge is under several vehicle forces simultaneously. As a result, this study focuses on the vibration of bridges subjected to convoys of several mobile loads. Based on the analysis of the equation of motion that manage this behavior for the case of a simplysupported unamortized thin beam, subjected to convoys of one, two, and three forces at constant speed. In order to verify the solution obtained for a convoy of n forces through the superposition of solutions of single force with a time offset, see the influence of the spacing 'e' between the forces of the convoy on the dynamic amplification factor and compare the results of the analytical study with those derived from the real model established by the software Csi Bridge.
The dynamic behavior of bridges under the effect of moving loads simulating the vehicle moving along the bridge structure idealized by an Euler beam is analyzed. We will present the dynamic behavior of beams under the stress of moving loads (or masses) by the analytical and semi-analytical approaches. When the mass of the bridge structure is comparable to that of the vehicle, the mobile source requesting the bridge is simulated by a mass. In most practical cases, the mobile force used is due to the effects of the gravitational moving masses: . When the moving mass is small compared to the beam mass, the obtained solution under the effect of moving force is approximately correct for the solution obtained with the moving mass. Otherwise, the problem of the moving mass is imperative. To do this, we wrote a program in Matlab language which reflects the dynamic behavior of beams under the effect of moving charges, which gives the following results "The frequencies and modes of vibration, the dynamics deflection of the beam requested by moving force, the dynamic response (DAF: dynamic amplification factor) of the beam requested by a moving force, over the whole length of the beam, for all times and for different speeds. The numerical example that we look to see for study the dynamic behavior of this type of bridge under moving loads is that of a thin beam unamortised on simple support and length of 50m, under the solicitation of moving force and mass at a constant speed and varies from 0 to 100 m / s (M. A. Foda, 1997), depending on the relationship between the vehicle mass and the mass of the bridge that will allow us to see the contribution of the choice of modelling type on the total response and then the vibration of bridge, also we will study the effect of type of simulation of the load by moving force or mass on the dynamic amplification factor and comparing our results with those from the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.