Galloway-Mowat syndrome (GAMOS) is a severe autosomal-recessive disease characterized by the combination of early-onset steroid-resistant nephrotic syndrome (SRNS) and microcephaly with brain anomalies. To date, mutations of WDR73 are the only known monogenic cause of GAMOS and in most affected individuals the molecular diagnosis remains elusive. We here identify recessive mutations of OSGEP, TP53RK, TPRKB, or LAGE3, encoding the 4 subunits of the KEOPS complex in 33 individuals of 30 families with GAMOS. CRISPR/Cas9 knockout in zebrafish and mice recapitulates the human phenotype of microcephaly and results in early lethality. Knockdown of OSGEP, TP53RK, or TPRKB inhibits cell proliferation, which human mutations fail to rescue, and knockdown of either gene activates DNA damage response signaling and induces apoptosis. OSGEP and TP53RK molecularly interact and co-localize with the actin-regulating ARP2/3 complex. Furthermore, knockdown of OSGEP and TP53RK induces defects of the actin cytoskeleton and reduces migration rate of human podocytes, an established intermediate phenotype of SRNS. We thus identify 4 novel monogenic causes of GAMOS, describe the first link between KEOPS function and human disease, and delineate potential pathogenic mechanisms.
Nucleoporins (NUPs) are essential components of the nuclear pore complex (NPC).1 Only few diseases have been attributed to NPC dysfunction.2-4 Steroid resistant nephrotic syndrome (SRNS), a frequent cause of chronic kidney disease, is caused by dysfunction of glomerular podocytes.5 Here we identify in 8 families with SRNS mutations of NUP93, its interaction partner NUP205, or exportin5 (XPO5) as a hitherto unrecognized monogenic cause of SRNS. NUP93 mutations caused disrupted NPC assembly. NUP93 knockdown reduced the presence of NUP205 in the NPC and, reciprocally, a NUP205 mutation abrogated NUP93 interaction. We demonstrate that NUP93 and XPO5 interact with the signaling protein SMAD4, and that NUP93 mutations abrogated interaction with SMAD4. Significantly, NUP93 mutations interfered with BMP7-induced SMAD transcriptional reporter activity. We hereby demonstrate that mutations of NUPs cause a distinct renal disease, and reveal SMAD signaling as a novel disease mechanism of SRNS, opening a potential new avenue for treatment.
Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of diseaseassociated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.