Previous studies have shown that macrophages and tumor cells are comigratory in mammary tumors and that these cell types are mutually dependent for invasion. Here we show that macrophages and tumor cells are necessary and sufficient for comigration and invasion into collagen I and that this process involves a paracrine loop. Macrophages express epidermal growth factor (EGF), which promotes the formation of elongated protrusions and cell invasion by carcinoma cells.
Lamellipodial protrusion and directional migration of carcinoma cells towards chemoattractants, such as epidermal growth factor (EGF), depend upon the spatial and temporal regulation of actin cytoskeleton by actin-binding proteins (ABPs). It is generally hypothesized that the activity of many ABPs are temporally and spatially regulated by PIP2; however, this is mainly based on in vitro–binding and structural studies, and generally in vivo evidence is lacking. Here, we provide the first in vivo data that directly visualize the spatial and temporal regulation of cofilin by PIP2 in living cells. We show that EGF induces a rapid loss of PIP2 through PLC activity, resulting in a release and activation of a membrane-bound pool of cofilin. Upon release, we find that cofilin binds to and severs F-actin, which is coincident with actin polymerization and lamellipod formation. Moreover, our data provide evidence for how PLC is involved in the formation of protrusions in breast carcinoma cells during chemotaxis and metastasis towards EGF.
Matsuzawa-Ishimoto et al. show that autophagy gene ATG16L1, which is associated with inflammatory diseases of the gastrointestinal tract, is essential for preventing necroptotic cell death and loss of Paneth cells in the intestinal epithelium.
Cell motility and migration play pivotal roles in numerous physiological and pathophysiological processes including development and tissue repair. Cell migration is regulated through external stimuli such as platelet-derived growth factor-AA (PDGF-AA), a key regulator in directional cell migration during embryonic development and a chemoattractant during postnatal migratory responses including wound healing. We previously showed that PDGFRα signaling is coordinated by the primary cilium in quiescent cells. However, little is known about the function of the primary cilium in cell migration. Here we used micropipette analysis to show that a normal chemosensory response to PDGF-AA in fibroblasts requires the primary cilium. In vitro and in vivo wound healing assays revealed that in ORPK mouse (IFT88Tg737Rpw) fibroblasts, where ciliary assembly is defective, chemotaxis towards PDGF-AA is absent, leading to unregulated high speed and uncontrolled directional cell displacement during wound closure, with subsequent defects in wound healing. These data suggest that in coordination with cytoskeletal reorganization, the fibroblast primary cilium functions via ciliary PDGFRα signaling to monitor directional movement during wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.