The Modern-Era Retrospective Analysis for Research and Applications (MERRA) was undertaken by NASA’s Global Modeling and Assimilation Office with two primary objectives: to place observations from NASA’s Earth Observing System satellites into a climate context and to improve upon the hydrologic cycle represented in earlier generations of reanalyses. Focusing on the satellite era, from 1979 to the present, MERRA has achieved its goals with significant improvements in precipitation and water vapor climatology. Here, a brief overview of the system and some aspects of its performance, including quality assessment diagnostics from innovation and residual statistics, is given. By comparing MERRA with other updated reanalyses [the interim version of the next ECMWF Re-Analysis (ERA-Interim) and the Climate Forecast System Reanalysis (CFSR)], advances made in this new generation of reanalyses, as well as remaining deficiencies, are identified. Although there is little difference between the new reanalyses in many aspects of climate variability, substantial differences remain in poorly constrained quantities such as precipitation and surface fluxes. These differences, due to variations both in the models and in the analysis techniques, are an important measure of the uncertainty in reanalysis products. It is also found that all reanalyses are still quite sensitive to observing system changes. Dealing with this sensitivity remains the most pressing challenge for the next generation of reanalyses. Production has now caught up to the current period and MERRA is being continued as a near-real-time climate analysis. The output is available online through the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC).
Scientists from several institutions and with different research backgrounds have worked together to develop a prototype modular land model for weather forecasting and climate studies. This model is now available for public use and further development.C limate and weather forecasting models require the energy, water, and momentum fluxes across the land-atmosphere interface to be specified. Various land surface parameterizations (LSPs), ranging from the simple bucket-type LSP in the 1960s to the current soil-vegetation-atmosphere interactive LSP, have been developed in the past four decades to calculate these fluxes. The Project for Intercomparison of Land Surface Parameterization Schemes (PILPS) has demonstrated that, even with the same atmospheric forcing data and similar land surface parameters, different LSPs still give significantly different surface fluxes and soil wetness, partly because of the differences in the formulations of individual processes and coding architectures in participant models . On the other hand, most LSPs share many common components, suggesting the need to develop a publicly available common land model with a modular structure that could facilitate the exploration of new issues, less repetition of past efforts, and sharing of improvements and refinements contributed by different groups.The Common Land Model (CLM) effort dates back to the mid-1990s and has evolved through various workshops and e-mail correspondence. The initial motivation was to provide a framework for a truly community-developed land component of the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). Interest in applying CLM came from the Goddard Space Flight Center (GSFC) Data Assimilation Office (DAO), which was implementing the Mosaic model (Koster and Suarez 1992), and the Center for Ocean-Land-Atmosphere Studies (COLA) scientists, who were revising their Simplified Simple Biosphere Model (SSiB) (Xue et al. 1991). We also established ties to groups performing carbon cycle and ecological modeling.In developing CLM, we attempted to combine the best features of three existing successful and relatively
Retrospective-analysis (or reanalysis) systems merge observations and models to provide global four-dimensional earth system data encompassing many physical and dynamical processes. Precipitation is one critical diagnostic that is not only sensitive to the observing system and model physics, but also reflects the general circulation. Climate records of observed precipitation through a merged satellite and gauge dataset provide a reference for comparison, though not without their own uncertainty. In this study, five reanalyses precipitation fields are compared with two observed data products to assess the strengths and weaknesses of the reanalyses. Taylor diagrams show the skill of the reanalyses relative to the reference dataset. While there is a general sense that the reanalyses precipitation data are improving in recent systems, it is not always the case. In some ocean regions, NCEP–NCAR reanalysis spatial patterns are closer to observed precipitation than NCEP–Department of Energy. The 40-yr ECMWF reanalysis (ERA-40) produces reasonable comparisons over Northern Hemisphere continents, but less so in the tropical oceans. On the other hand, the most recent reanalysis, the Japanese 25-yr reanalysis (JRA-25), shows good comparisons in both the Northern Hemisphere continents and the tropical oceans but contains distinct variation according to the available observing systems. The statistics and methods used are also tested on short experiments from a data assimilation system proposed to perform a satellite-era reanalysis.
This study quantifies mean annual and monthly fluxes of Earth's water cycle over continents and ocean basins during the first decade of the millennium. To the extent possible, the flux estimates are based on satellite measurements first and data-integrating models second. A careful accounting of uncertainty in the estimates is included. It is applied within a routine that enforces multiple water and energy budget constraints simultaneously in a variational framework in order to produce objectively determined optimized flux estimates. In the majority of cases, the observed annual surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are negligible. Fluxes were poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian islands, leading to reliance on atmospheric analysis estimates. Many of the satellite systems that contributed data have been or will soon be lost or replaced. Models that integrate ground-based and remote observations will be critical for ameliorating gaps and discontinuities in the data records caused by these transitions. Continued development of such models is essential for maximizing the value of the observations. Next-generation observing systems are the best hope for significantly improving global water budget accounting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.