Purpose To develop a Radiation Therapy Oncology Group (RTOG) atlas of the elective clinical target volume (CTV) definitions to be used for planning pelvic intensity-modulated radiotherapy (IMRT) for anal and rectal cancers. Methods and Materials The Gastrointestinal Committee of the RTOG established a task group (the nine physician co-authors) to develop this atlas. They responded to a questionnaire concerning three elective CTVs (CTVA: internal iliac, pre-sacral and peri-rectal nodal regions for both anal and rectal case planning; CTVB: external iliac nodal region for anal case planning and for selected rectal cases; CTVC: inguinal nodal region for anal case planning and for select rectal cases), and to outline these areas on individual computed tomography images. The imaging files were shared via the Advanced Technology Consortium. A program developed by one of the co-authors (IEN) utilized binomial maximum-likelihood estimates to generate a 95% group consensus contour. The computer-estimated consensus contours were then reviewed by the group and modified to provide a final contouring consensus atlas. Results The panel achieved consensus CTV definitions to be used as guidelines for the adjuvant therapy of rectal cancer and definitive therapy for anal cancer. The most important difference from similar atlases for gynecologic or genitourinary cancer is mesorectal coverage. Detailed target volume contouring guidelines and images are discussed. Conclusion This report serves as a template for the definition of the elective CTVs to be used in IMRT planning for anal and rectal cancers, as part of prospective RTOG trials.
SummaryBackgroundData suggest selective internal radiotherapy (SIRT) in third-line or subsequent therapy for metastatic colorectal cancer has clinical benefit in patients with colorectal liver metastases with liver-dominant disease after chemotherapy. The FOXFIRE, SIRFLOX, and FOXFIRE-Global randomised studies evaluated the efficacy of combining first-line chemotherapy with SIRT using yttrium-90 resin microspheres in patients with metastatic colorectal cancer with liver metastases. The studies were designed for combined analysis of overall survival.MethodsFOXFIRE, SIRFLOX, and FOXFIRE-Global were randomised, phase 3 trials done in hospitals and specialist liver centres in 14 countries worldwide (Australia, Belgium, France, Germany, Israel, Italy, New Zealand, Portugal, South Korea, Singapore, Spain, Taiwan, the UK, and the USA). Chemotherapy-naive patients with metastatic colorectal cancer (WHO performance status 0 or 1) with liver metastases not suitable for curative resection or ablation were randomly assigned (1:1) to either oxaliplatin-based chemotherapy (FOLFOX: leucovorin, fluorouracil, and oxaliplatin) or FOLFOX plus single treatment SIRT concurrent with cycle 1 or 2 of chemotherapy. In FOXFIRE, FOLFOX chemotherapy was OxMdG (oxaliplatin modified de Gramont chemotherapy; 85 mg/m2 oxaliplatin infusion over 2 h, L-leucovorin 175 mg or D,L-leucovorin 350 mg infusion over 2 h, and 400 mg/m2 bolus fluorouracil followed by a 2400 mg/m2 continuous fluorouracil infusion over 46 h). In SIRFLOX and FOXFIRE-Global, FOLFOX chemotherapy was modified FOLFOX6 (85 mg/m2 oxaliplatin infusion over 2 h, 200 mg leucovorin, and 400 mg/m2 bolus fluorouracil followed by a 2400 mg/m2 continuous fluorouracil infusion over 46 h). Randomisation was done by central minimisation with four factors: presence of extrahepatic metastases, tumour involvement of the liver, planned use of a biological agent, and investigational centre. Participants and investigators were not masked to treatment. The primary endpoint was overall survival, analysed in the intention-to-treat population, using a two-stage meta-analysis of pooled individual patient data. All three trials have completed 2 years of follow-up. FOXFIRE is registered with the ISRCTN registry, number ISRCTN83867919. SIRFLOX and FOXFIRE-Global are registered with ClinicalTrials.gov, numbers NCT00724503 (SIRFLOX) and NCT01721954 (FOXFIRE-Global).FindingsBetween Oct 11, 2006, and Dec 23, 2014, 549 patients were randomly assigned to FOLFOX alone and 554 patients were assigned FOLFOX plus SIRT. Median follow-up was 43·3 months (IQR 31·6–58·4). There were 411 (75%) deaths in 549 patients in the FOLFOX alone group and 433 (78%) deaths in 554 patients in the FOLFOX plus SIRT group. There was no difference in overall survival (hazard ratio [HR] 1·04, 95% CI 0·90–1·19; p=0·61). The median survival time in the FOLFOX plus SIRT group was 22·6 months (95% CI 21·0–24·5) compared with 23·3 months (21·8–24·7) in the FOLFOX alone group. In the safety population containing patients who received at least ...
The dose response relationship for the acute gastrointestinal syndrome following total-body irradiation prevents analysis of the full recovery and damage to the gastrointestinal system, since all animals succumb to the subsequent 100% lethal hematopoietic syndrome. A partial-body irradiation model with 5% bone marrow sparing was established to investigate the prolonged effects of high-dose radiation on the gastrointestinal system, as well as the concomitant hematopoietic syndrome and other multi-organ injury including the lung. Herein, cellular and clinical parameters link acute and delayed coincident sequelae to radiation dose and time course post-exposure. Male rhesus Macaca mulatta were exposed to partial-body irradiation with 5% bone marrow (tibiae, ankles, feet) sparing using 6 MV linear accelerator photons at a dose rate of 0.80 Gy min−1 to midline tissue (thorax) doses in the exposure range of 9.0 to 12.5 Gy. Following irradiation, all animals were monitored for multiple organ-specific parameters for 180 d. Animals were administered medical management including administration of intravenous fluids, antiemetics, prophylactic antibiotics, blood transfusions, antidiarrheals, supplemental nutrition, and analgesics. The primary endpoint was survival at 15, 60, or 180 d post-exposure. Secondary endpoints included evaluation of dehydration, diarrhea, hematologic parameters, respiratory distress, histology of small and large intestine, lung radiographs, and mean survival time of decedents. Dose- and time-dependent mortality defined several organ-specific sequelae, with LD50/15 of 11.95 Gy, LD50/60 of 11.01 Gy, and LD50/180 of 9.73 Gy for respective acute gastrointestinal, combined hematopoietic and gastrointestinal, and multi-organ delayed injury to include the lung. This model allows analysis of concomitant multi-organ sequelae, thus providing a link between acute and delayed radiation effects. Specific and multi-organ medical countermeasures can be assessed for efficacy and interaction during the concomitant evolution of acute and delayed key organ-specific subsyndromes.
Several radiation dose- and time-dependent tissue sequelae develop following acute high-dose radiation exposure. One of the recognized delayed effects of such exposures is lung injury, characterized by respiratory failure as a result of pneumonitis that may subsequently develop into lung fibrosis. Since this pulmonary subsyndrome may be associated with high morbidity and mortality, comprehensive treatment following high-dose irradiation will ideally include treatments that mitigate both the acute hematologic and gastrointestinal subsyndromes as well as the delayed pulmonary syndrome. Currently, there are no drugs approved by the Food and Drug Administration to counteract the effects of acute radiation exposure. Moreover, there are no relevant large animal models of radiation-induced lung injury that permit efficacy testing of new generation medical countermeasures in combination with medical management protocols under the FDA animal rule criteria. Herein is described a nonhuman primate model of delayed lung injury resulting from whole thorax lung irradiation. Rhesus macaques were exposed to 6 MV photon radiation over a dose range of 9.0-12.0 Gy and medical management administered according to a standardized treatment protocol. The primary endpoint was all-cause mortality at 180 d. A comparative multiparameter analysis is provided, focusing on the lethal dose response relationship characterized by a lethal dose50/180 of 10.27 Gy [9.88, 10.66] and slope of 1.112 probits per linear dose. Latency, incidence, and severity of lung injury were evaluated through clinical and radiographic parameters including respiratory rate, saturation of peripheral oxygen, corticosteroid requirements, and serial computed tomography. Gross anatomical and histological analyses were performed to assess radiation-induced injury. The model defines the dose response relationship and time course of the delayed pulmonary sequelae and consequent morbidity and mortality. Therefore, it may provide an effective platform for the efficacy testing of candidate medical countermeasures against the delayed pulmonary syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.