ABSTRACT:Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a cold-air outbreak mixed-phase stratocumulus cloud observed during the Atmospheric Radiation Measurement (ARM) programme's Mixed-Phase Arctic Cloud Experiment. The observed cloud occurred in a well-mixed boundary layer with a cloud-top temperature of −15 • C. The average liquid water path of around 160 g m −2 was about two-thirds of the adiabatic value and far greater than the average mass of ice which when integrated from the surface to cloud top was around 15 g m −2 .Simulations of 17 single-column models (SCMs) and 9 cloud-resolving models (CRMs) are compared. While the simulated ice water path is generally consistent with observed values, the median SCM and CRM liquid water path is a factor-of-three smaller than observed. Results from a sensitivity study in which models removed ice microphysics suggest that in many models the interaction between liquid and ice-phase microphysics is responsible for the large model underestimate of liquid water path.Despite this underestimate, the simulated liquid and ice water paths of several models are consistent with observed values. Furthermore, models with more sophisticated microphysics simulate liquid and ice water paths that are in better agreement with the observed values, although considerable scatter exists. Although no single factor guarantees a good simulation, these results emphasize the need for improvement in the model representation of mixed-phase microphysics.
Machine learning methods have found many applications in Raman spectroscopy, especially for the identification of chemical species. However, almost all of these methods require non-trivial preprocessing such as baseline correction and/or PCA as an essential step. Here we describe our unified solution for the identification of chemical species in which a convolutional neural network is trained to automatically identify substances according to their Raman spectrum without the need of ad-hoc preprocessing steps. We evaluated our approach using the RRUFF spectral database, comprising mineral sample data. Superior classification performance is demonstrated compared with other frequently used machine learning algorithms including the popular support vector machine.
Estimates of the frequency of metameric surfaces, which appear the same to the eye under one illuminant but different under another, were obtained from 50 hyperspectral images of natural scenes. The degree of metamerism was specified with respect to a color-difference measure after allowing for full chromatic adaptation. The relative frequency of metameric pairs of surfaces, expressed as a proportion of all pairs of surfaces in a scene, was very low. Depending on the criterion degree of metamerism, it ranged from about 10(-6) to 10(-4) for the largest illuminant change tested, which was from a daylight of correlated color temperature 25,000 K to one of 4000 K. But, given pairs of surfaces that were indistinguishable under one of these illuminants, the conditional relative frequency of metamerism was much higher, from about 10(-2) to 10(-1), sufficiently large to affect visual inferences about material identity.
The naive Bayesian methodology has been applied to the challenging problem of cloud detection with NOAA’s Advanced Very High Resolution Radiometer (AVHRR). An analysis of collocated NOAA-18/AVHRR and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)/Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations was used to automatically and globally derive the Bayesian classifiers. The resulting algorithm used six Bayesian classifiers computed separately for seven surface types. Relative to CALIPSO, the final results show a probability of correct detection of roughly 90% over water, deserts, and snow-free land; 82% over the Arctic; and below 80% over the Antarctic. This technique is applied within the NOAA Pathfinder Atmosphere’s Extended (PATMOS-x) climate dataset and the Clouds from AVHRR Extended (CLAVR-x) real-time product generation system. Comparisons of the PATMOS-x results with those from International Satellite Cloud Climatology Project (ISCCP) and Moderate Resolution Imaging Spectroradiometer (MODIS) indicate close agreement with zonal mean differences in cloud amount being less than 5% over most zones. Most areas of difference coincided with regions where the Bayesian cloud mask reported elevated uncertainties. The ability to report uncertainties is a critical component of this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.