The integrity of the inner membrane of mitochondria is maintained by a membrane-embedded quality control system that ensures the removal of misfolded membrane proteins. Two ATP-dependent AAA proteases with catalytic sites at opposite membrane surfaces are key components of this proteolytic system. Here we describe the identification of a novel conserved metallopeptidase that exerts activities overlapping with the m-AAA protease and was therefore termed Oma1. Both peptidases are integral parts of the inner membrane and mediate the proteolytic breakdown of a misfolded derivative of the polytopic inner membrane protein Oxa1. The m-AAA protease cleaves off the matrix-exposed C-terminal domain of Oxa1 and processively degrades its transmembrane domain. In the absence of the m-AAA protease, proteolysis of Oxa1 is mediated in an ATP-independent manner by Oma1 and a yet unknown peptidase resulting in the accumulation of N-and C-terminal proteolytic fragments. Oma1 exposes its proteolytic center to the matrix side; however, mapping of Oma1 cleavage sites reveals clipping of Oxa1 in loop regions at both membrane surfaces. These results identify Oma1 as a novel component of the quality control system in the inner membrane of mitochondria. Proteins homologous to Oma1 are present in higher eukaryotic cells, eubacteria and archaebacteria, suggesting that Oma1 is the founding member of a conserved family of membrane-embedded metallopeptidases.The majority of mitochondrial proteins is nuclear encoded and synthesized at cytosolic ribosomes. Import into mitochondria is mediated by various protein translocases in the outer and inner membrane that allow the passage of preproteins only in a largely unfolded conformation (1, 2). Folding and assembly of mitochondrial proteins must therefore occur inside mitochondria. Little is known about the efficiency of this process, but it is clear that mitochondria, as other organelles, harbor a quality control system that ensures the recognition and removal of non-native polypeptides, preventing their potentially harmful accumulation within the organelle (3). Notably, a functional impairment of components of this system leads to neurodegeneration in various forms of hereditary spastic paraplegia, illustrating the importance of protein quality control for mitochondrial function (4, 5).Molecular chaperone proteins and ATP-dependent proteases present in different subcompartments of mitochondria maintain protein quality control within the organelle (3). In line with the endosymbiotic origin of mitochondria, many of these components exhibit significant homology to bacterial proteins. ATP-dependent proteases homologous to Lon proteases (6 -8) and, at least in some organisms, Clp proteases (9, 10) have been identified in the mitochondrial matrix space, whereas the inner membrane harbors two AAA proteases homologous to bacterial FtsH proteases (11). These membrane-embedded peptidases were termed m-and i-AAA proteases to indicate their different topology in the inner membrane; the m-AAA protease is activ...
BackgroundComparative genomics has greatly improved our understanding of the evolution of pathogenic mycobacteria such as Mycobacterium tuberculosis. Here we have used data from a genome microarray analysis to explore insertion-deletion (InDel) polymorphism among a diverse strain collection of Mycobacterium ulcerans, the causative agent of the devastating skin disease, Buruli ulcer. Detailed analysis of large sequence polymorphisms in twelve regions of difference (RDs), comprising irreversible genetic markers, enabled us to refine the phylogenetic succession within M. ulcerans, to define features of a hypothetical M. ulcerans most recent common ancestor and to confirm its origin from Mycobacterium marinum.Results M. ulcerans has evolved into five InDel haplotypes that separate into two distinct lineages: (i) the "classical" lineage including the most pathogenic genotypes – those that come from Africa, Australia and South East Asia; and (ii) an "ancestral" M. ulcerans lineage comprising strains from Asia (China/Japan), South America and Mexico. The ancestral lineage is genetically closer to the progenitor M. marinum in both RD composition and DNA sequence identity, whereas the classical lineage has undergone major genomic rearrangements.ConclusionResults of the InDel analysis are in complete accord with recent multi-locus sequence analysis and indicate that M. ulcerans has passed through at least two major evolutionary bottlenecks since divergence from M. marinum. The classical lineage shows more pronounced reductive evolution than the ancestral lineage, suggesting that there may be differences in the ecology between the two lineages. These findings improve the understanding of the adaptive evolution and virulence of M. ulcerans and pathogenic mycobacteria in general and will facilitate the development of new tools for improved diagnostics and molecular epidemiology.
Genomic studies on pathogenic and environmental mycobacteria are of growing interest for understanding of their evolution, distribution, adaptation, and host-pathogen interaction. Since most mycobacteria are slow growers, material from in vitro cultures is usually scarce. The robust mycobacterial cell wall hinders both experimental cell lysis and efficient DNA extraction. Here, we compare elements of several DNA preparation protocols and describe a method that is economical and practical and reliably yields large amounts-usually 10-fold increased compared to earlier protocols-of highly pure genomic DNA for sophisticated downstream applications. This method was optimized for cultures of a variety of pathogenic and environmental mycobacterial species and proven to be suitable for direct mycobacterial DNA extraction from infected insect specimens.Mycobacterial diseases are a major health concern for humans (i.e., Mycobacterium tuberculosis, M. leprae, M. ulcerans, M. avium, and M. paratuberculosis) (4, 13, 18, 29, 30) (13,20). Efficient methods for DNA preparation are required both for the identification and genotyping of such pathogens and for population genomics, which is developing into an important tool to study bacterial evolution, virulence, and epidemiology.Extraction of mycobacterial genomic DNA is especially demanding since (i) many mycobacterial species are among the most extreme slow growers, accounting for small amounts of starting material, and (ii) a robust and waxy cell wall renders mycobacteria difficult to lyse. Published protocols for mycobacterial DNA preparations and commercially available extraction kits are mainly designed for the isolation of small amounts of genomic material suitable for conventional PCR application (2,7,9,11,14,15,23,24,27,28,33), such as for testing of potentially contaminated milk (6,8,17). However, such DNA quantities and qualities are usually not sufficient for more sophisticated molecular analyses.M. ulcerans, the causative agent of the devastating human skin disease Buruli ulcer, is one of the slowest growers among mycobacterial species, and the development of molecular tools is crucial for studying its transmission and microepidemiology. The objective of this study was to develop an optimized extraction protocol for DNA of both high quantity and quality from scarce material of in vitro-cultivated M. ulcerans disease isolates. We compared elements of several protocols and developed a DNA preparation method that is optimized in each individual step and thus ready to use for virtually all mycobacterial species to yield a maximum of pure genetic material. In addition, we applied the established method to cultures of a variety of pathogenic and environmental mycobacterial species and tested it by isolating DNA from insects experimentally infected with M. ulcerans. MATERIALS AND METHODSMycobacterial strains and preparation of mycobacterial cell suspensions. The strains used for this investigation and their origins are as follows: M. ulcerans Agy99, Malaysia 1615, and Japa...
An ubiquitous and conserved proteolytic system regulates the stability of mitochondrial inner membrane proteins. Two AAA proteases with catalytic sites at opposite membrane surfaces form a membrane-integrated quality control system and exert crucial functions during the biogenesis of mitochondria. Their activity is modulated by another membrane-protein complex that is composed of prohibitins. Peptides generated upon proteolysis in the matrix space are transported across the inner membrane by an ATP-binding cassette transporter. The function of these conserved components is discussed in the present review.
Buruli ulcer (BU) is an emerging necrotizing disease of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. While proximity to stagnant or slow flowing water bodies is a risk factor for acquiring BU, the epidemiology and mode of M. ulcerans transmission is poorly understood. Here we have used high-throughput DNA sequencing and comparisons of the genomes of seven M. ulcerans isolates that appeared monomorphic by existing typing methods. We identified a limited number of single nucleotide polymorphisms (SNPs) and developed a real-time PCR SNP typing method based on these differences. We then investigated clinical isolates of M. ulcerans on which we had detailed information concerning patient location and time of diagnosis. Within the Densu river basin of Ghana we observed dominance of one clonal complex and local clustering of some of the variants belonging to this complex. These results reveal focal transmission and demonstrate, that micro-epidemiological analyses by SNP typing has great potential to help us understand how M. ulcerans is transmitted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.