This paper reviews recent advances and future challenges in analytical and experimental methods for understanding and verifying the deployment of inflatable structures in space. Concepts for free and controlled deployments are discussed and examples are cited. Prior experiences with ground and flight experiments are examined and the promise of predictive analytical models is reviewed.In the early stage of inflatable developments, analytical simulations of deployment were noticeably lagging because of the high degree of problem complexity. However, recent experiences with a number of engineering and phenomenological models show that these models are particularly useful in explaining the physics of deployment. The paper concludes with likely future directions on the best use of deployment tests and analytical simulations to enhance the low mass and volume advantages of inflatables with greater deployment reliability, and at the same time, minimize the use of massive complex control devices. *
Deployment dynamic behavior of an inflatable space structure is analyzed using a combination of gas dynamic analysis and rigid-body kinematics simulations. Modeling technique is presented for deployment of a simple cantilever boom that is rolled up on a cylindrical mandrel. During this deployment process, boom vibration is captured with the analytical models. The deployment process of a 5-m inflatable/self-rigidizable boom has also been tested, and the test results correlated very well with analytical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.